1
|
Noto H, Osame K, Sasazuki T and Noda M:
Substantially increased risk of cancer in patients with diabetes
mellitus: A systematic review and meta-analysis of epidemiologic
evidence in Japan. J Diabetes Complications. 24:345–353. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Buysschaert M and Sadikot S: Diabetes and
cancer: A 2013 synopsis. Diabetes Metab Syndr. 7:247–250. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Michels KB, Solomon CG, Hu FB, Rosner BA,
Hankinson SE, Colditz GA and Manson JE: Nurses' Health Study: Type
2 diabetes and subsequent incidence of breast cancer in the Nurses'
Health Study. Diabetes Care. 26:1752–1758. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Dardevet D, Moore MC, Neal D, DiCostanzo
CA, Snead W and Cherrington AD: Insulin-independent effects of
GLP-1 on canine liver glucose metabolism: Duration of infusion and
involvement of hepatoportal region. Am J Physiol Endocrinol Metab.
287:E75–E81. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sancho V, Trigo MV, González N, Valverde
I, Malaisse WJ and Villanueva-Peñacarrillo ML: Effects of
glucagon-like peptide-1 and exendins on kinase activity, glucose
transport and lipid metabolism in adipocytes from normal and type-2
diabetic rats. J Mol Endocrinol. 35:27–38. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pannacciulli N, Le DS, Salbe AD, Chen K,
Reiman EM, Tataranni PA and Krakoff J: Postprandial glucagon-like
peptide-1 (GLP-1) response is positively associated with changes in
neuronal activity of brain areas implicated in satiety and food
intake regulation in humans. Neuroimage. 35:511–517. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ligumsky H, Wolf I, Israeli S, Haimsohn M,
Ferber S, Karasik A, Kaufman B and Rubinek T: The peptide-hormone
glucagon-like peptide-1 activates cAMP and inhibits growth of
breast cancer cells. Breast Cancer Res Treat. 132:449–461. 2012.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Quoyer J, Longuet C, Broca C, Linck N,
Costes S, Varin E, Bockaert J, Bertrand G and Dalle S: GLP-1
mediates antiapoptotic effect by phosphorylating Bad through a
beta-arrestin 1-mediated ERK1/2 activation in pancreatic
beta-cells. J Biol Chem. 285:1989–2002. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Elashoff M, Matveyenko AV, Gier B,
Elashoff R and Butler PC: Pancreatitis, pancreatic, and thyroid
cancer with glucagon-like peptide-1-based therapies.
Gastroenterology. 141:150–156. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bartels CL and Tsongalis GJ: MicroRNAs:
Novel biomarkers for human cancer. Clin Chem. 55:623–631. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu T, Tang H, Lang Y, Liu M and Li X:
MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by
targeting prohibitin. Cancer Lett. 273:233–242. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang L, Chen YJ, Xu K, Xu H, Shen XZ and
Tu RQ: Circulating microRNAs as a fingerprint for endometrial
endometrioid adenocarcinoma. PLoS One. 9:e1107672014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Samantarrai D, Dash S, Chhetri B and
Mallick B: Genomic and epigenomic cross-talks in the regulatory
landscape of miRNAs in breast cancer. Mol Cancer Res. 11:315–328.
2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sun L and Fang J: Epigenetic regulation of
epithelial-mesenchymal transition. Cell Mol Life Sci. 73:4493–4515.
2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li X, Mertens-Talcott SU, Zhang S, Kim K,
Ball J and Safe S: MicroRNA-27a indirectly regulates estrogen
receptor {alpha} expression and hormone responsiveness in MCF-7
breast cancer cells. Endocrinology. 151:2462–2473. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ma Y, Yu S, Zhao W, Lu Z and Chen J:
miR-27a regulates the growth, colony formation and migration of
pancreatic cancer cells by targeting Sprouty2. Cancer Lett.
298:150–158. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mertens-Talcott SU, Chintharlapalli S, Li
X and Safe S: The oncogenic microRNA-27a targets genes that
regulate specificity protein transcription factors and the G2-M
checkpoint in MDA-MB-231 breast cancer cells. Cancer Res.
67:11001–11011. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tang W, Yu F, Yao H, Cui X, Jiao Y, Lin L,
Chen J, Yin D, Song E and Liu Q: miR-27a regulates endothelial
differentiation of breast cancer stem like cells. Oncogene.
33:2629–2638. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hardie DG: AMP-activated protein kinase:
An energy sensor that regulates all aspects of cell function. Genes
Dev. 25:1895–1908. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fox MM, Phoenix KN, Kopsiaftis SG and
Claffey KP: AMP-activated protein kinase alpha 2 isoform
suppression in primary breast cancer alters AMPK growth control and
apoptotic signaling. Genes Cancer. 4:3–14. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hadad SM, Baker L, Quinlan PR, Robertson
KE, Bray SE, Thomson G, Kellock D, Jordan LB, Purdie CA, Hardie DG,
et al: Histological evaluation of AMPK signalling in primary breast
cancer. BMC Cancer. 9:3072009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li Z, Ni CL, Yao Z, Chen LM and Niu WY:
Liraglutide enhances glucose transporter 4 translocation via
regulation of AMP-activated protein kinase signaling pathways in
mouse skeletal muscle cells. Metabolism. 63:1022–1030. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Miao XY, Gu ZY, Liu P, Hu Y, Li L, Gong
YP, Shu H, Liu Y and Li CL: The human glucagon-like peptide-1
analogue liraglutide regulates pancreatic beta-cell proliferation
and apoptosis via an AMPK/mTOR/P70S6K signaling pathway. Peptides.
39:71–79. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ben-Shlomo S, Zvibel I, Shnell M, Shlomai
A, Chepurko E, Halpern Z, Barzilai N, Oren R and Fishman S:
Glucagon-like peptide-1 reduces hepatic lipogenesis via activation
of AMP-activated protein kinase. J Hepatol. 54:1214–1223. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhao W, Zhang X, Liu J, Sun B, Tang H and
Zhang H: miR-27a-mediated antiproliferative effects of metformin on
the breast cancer cell line MCF-7. Oncol Rep. 36:3691–3699. 2016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Wei W, Zhang Q, Wang Z, Yan B, Feng Y and
Li P: miR-219-5p inhibits proliferation and clonogenicity in
chordoma cells and is associated with tumor recurrence. Oncol Lett.
12:4568–4576. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Azumi J, Tsubota T, Sakabe T and Shiota G:
miR-181a induces sorafenib resistance of hepatocellular carinoma
cells through downregulation of RASSF1 expression. Cancer Sci.
107:1256–1262. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Prado A, Andrades P and Parada F: Recent
developments in the ability to predict and modify breast cancer
risk. J Plast Reconstr Aesthet Surg. 63:1581–1587. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schrauder MG, Fasching PA, Haberle L, Lux
MP, Rauh C, Hein A, Bayer CM, Heusinger K, Hartmann A, Strehl JD,
et al: Diabetes and prognosis in a breast cancer cohort. J Cancer
Res Clin Oncol. 137:975–983. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Juanjuan L, Wen W, Zhongfen L, Chuang C,
Jing C, Yiping G, Changhua W, Dehua Y and Shengrong S: Clinical
pathological characteristics of breast cancer patients with
secondary diabetes after systemic therapy: A retrospective
multicenter study. Tumour Biol. 36:6939–6947. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fidan-Yaylalı G, Dodurga Y, Seçme M and
Elmas L: Antidiabetic exendin-4 activates apoptotic pathway and
inhibits growth of breast cancer cells. Tumour Biol. 37:2647–2653.
2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Baggio LL and Drucker DJ: Biology of
incretins: GLP-1 and GIP. Gastroenterology. 132:2131–2157. 2007.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Simonsen L, Pilgaard S, Orskov C,
Rosenkilde MM, Hartmann B, Holst JJ and Deacon CF: Exendin-4, but
not dipeptidyl peptidase IV inhibition, increases small intestinal
mass in GK rats. Am J Physiol Gastrointest Liver Physiol.
293:G288–G295. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Alves C, Batel-Marques F and Macedo AF: A
meta-analysis of serious adverse events reported with exenatide and
liraglutide: Acute pancreatitis and cancer. Diabetes Res Clin
Pract. 98:271–284. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li Z, Ni CL, Yao Z, Chen LM and Niu WY:
Liraglutide enhances glucose transporter 4 translocation via
regulation of AMP-activated protein kinase signaling pathways in
mouse skeletal muscle cells. Metabolism. 63:1022–1030. 2014.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Ben-Shlomo S, Zvibel I, Shnell M, Shlomai
A, Chepurko E, Halpern Z, Barzilai N, Oren R and Fishman S:
Glucagon-like peptide-1 reduces hepatic lipogenesis via activation
of AMP-activated protein kinase. J Hepatol. 54:1214–1223. 2011.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Tang W, Zhu J, Su S, Wu W, Liu Q, Su F and
Yu F: MiR-27 as a prognostic marker for breast cancer progression
and patient survival. PLoS One. 7:e517022012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Smith U and Gale EA: Does diabetes therapy
influence the risk of cancer? Diabetologia. 52:1699–1708. 2009.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Giovannucci E, Harlan DM, Archer MC,
Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG and
Yee D: Diabetes and cancer: A consensus report. CA Cancer J Clin.
60:207–221. 2010. View Article : Google Scholar : PubMed/NCBI
|