1
|
Balami JS, Chen RL and Buchan AM: Stroke
syndromes and clinical management. QJM. 106:607–615. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Norrving B and Kissela B: The global
burden of stroke and need for a continuum of care. Neurology. 80 3
Suppl 2:S5–S12. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Meschia JF and Brott T: Ischemic stroke.
Eur J Neurol. 2017.(Epub ahead of print). PubMed/NCBI
|
4
|
Zevallos J, Santiago F, Gonzalez J,
Rodriguez A, Pericchi L, Rodriguez-Mercado R and Nobo U: Burden of
stroke in Puerto Rico. Int J Stroke. 10:117–119. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu M, Wu B, Wang WZ, Lee LM, Zhang SH and
Kong LZ: Stroke in China: Epidemiology, prevention and management
strategies. Lancet Neural. 6:456–458. 2007. View Article : Google Scholar
|
6
|
Lo EH, Dalkara T and Moskowitz MA:
Mechanisms, challenges and opportunities in stroke. Nat Rev
Neurosci. 4:399–415. 2003. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler
RA, Lawton MT and Yang GY: Vascular remodeling after ischemic
stroke: mechanisms and therapeutic potentials. Prog Neurobiol.
115:138–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hachinski V, Donnan GA, Gorelick PB, Hacke
W, Cramer SC, Kaste M, Fisher M, Brainin M, Buchan AM, Lo EH, et
al: Stroke: Working toward a prioritized world agenda. Stroke.
41:1084–1099. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dirnagl U, Iadecola C and Moskowitz MA:
Pathobiology of ischaemic stroke: An integrated view. Trends
Neurosci. 22:391–397. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Khoshnam SE, Winlow W, Farzaneh M, Farbood
Y and Moghaddam HF: Pathogenic mechanisms following ischemic
stroke. Neurol Sci. 38:1167–1186. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu M, Zhou GM, Wang LH, Zhu L, Liu JM,
Wang XD, Li HT and Chen L: Inhibiting high-mobility group box 1
(HMGB1) attenuates inflammatory cytokine expression and
neurological deficit in ischemic brain injury following cardiac
arrest in rats. Inflammation. 39:1594–1602. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang C, Jiang J, Zhang X, Song L, Sun K
and Xu R: Inhibiting HMGB1 reduces cerebral ischemia reperfusion
injury in diabetic mice. Inflammation. 39:1862–1870. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ooboshi H and Shichita T: DAMPs
(damage-associated molecular patterns) and inflammation. Nihon
Rinsho. 74:573–578. 2016.(In Japanese). PubMed/NCBI
|
14
|
Singh V, Roth S, Veltkamp R and Liesz A:
HMGB1 as a key mediator of immune mechanisms in ischemic stroke.
Antioxid Redox Signal. 24:635–651. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Murphy J: Pharmacological treatment of
acute ischemic stroke. Crit Care Nurs Q. 26:276–282. 2003.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Sun K, Fan J and Han J: Ameliorating
effects of traditional Chinese medicine preparation, Chinese
materia medica and active compounds on ischemia/reperfusion-induced
cerebral microcirculatory disturbances and neuron damage. Acta
Pharm Sin B. 5:8–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rawlings JS, Rosler KM and Harrison DA:
The JAK/STAT signaling pathway. J Cell Sci. 117:1281–1283. 2004.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Satriotomo I, Bowen KK and Vemuganti R:
JAK2 and STAT3 activation contributes to neuronal damage following
transient focal cerebral ischemia. J Neurochem. 98:1353–1368. 2006.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Xie HF, Xu RX, Wei JP, Jiang XD and Liu
ZH: P-JAK2 and P-STAT3 protein expression and cell apoptosis
following focal cerebral ischemia-reperfusion injury in rats. Nan
Fang Yi Ke Da Xue Xue Bao. 27:208–211. 2007.(In Chinese).
PubMed/NCBI
|
20
|
Liu H, Yao YM, Yu Y, Dong N, Yin HN and
Sheng ZY: Role of Janus kinase/signal transducer and activator of
transcription pathway in regulation of expression and
inflammation-promoting activity of high mobility group box protein
1 in rat peritoneal macrophages. Shock. 27:55–60. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Broughton BR, Reutens DC and Sobey CG:
Apoptotic mechanisms after cerebral ischemia. Stroke. 40:e331–e339.
2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vidale S, Consoli A, Arnaboldi M and
Consoli D: Postischemic inflammation in acute stroke. J Clin
Neurol. 13:1–9. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tuttolomondo A, Pecoraro R, Casuccio A, Di
Raimondo D, Buttà C, Clemente G, Della Corte V, Guggino G, Arnao V,
Maida C, et al: Peripheral frequency of CD4+ CD28-cells
in acute ischemic stroke: Relationship with stroke subtype and
severity markers. Medicine. 94:e8132015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tuttolomondo A, Pedone C, Pinto A, Di
Raimondo D, Fernandez P, Di Sciacca R and Licata G; Gruppo Italiano
di Farmacoepidemiologia dell'Anziano (GIFA) researchers, :
Predictors of outcome in acute ischemic cerebrovascular syndromes:
The GIFA study. Int J Cardiol. 125:391–396. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ueda T and Yoshida M: HMGB proteins and
transcriptional regulation. Biochim Biophys Acta. 1799:114–118.
2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Harris HE, Andersson U and Pisetsky DS:
HMGB1: A multifunctional alarm in driving autoimmune and
inflammatory disease. Nat Rev Rheumatol. 8:195–202. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Muhammad S, Barakat W, Stoyanov S,
Murikinati S, Yang H, Tracey KJ, Bendszus M, Rossetti G, Nawroth
PP, Bierhaus A and Schwaninger M: The HMGB1 receptor RAGE mediates
ischemic brain damage. J Neurosci. 28:12023–12031. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Svedin P, Hagberg H, Sävman K, Zhu C and
Mallard C: Matrix metalloproteimse-gene knock-out protects
theimrnatare train alter cerebral hypoxia-ischema. J Neurosci.
27:1511–1518. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS,
Kim SW, Lee MH, Han PL, Park JS and Lee JK: HMGB1, a novel
cytokine-like mediator linking acute neuronal death and delayed
neuroinflammation in the postischemic brain. J Neurosci.
26:6413–6421. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu K, Mori S, Takahashi HK, Tomono Y,
Wake H, Kanke T, Sato Y, Hiraga N, Adachi N, Yoshino T and
Nishibori M: Anti-high mobility group box 1 monoclonal antibody
ameliorates brain infarction induced by transient ischemia in rats.
FASEB J. 21:3904–3916. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Babon JJ, Lucet IS, Murphy JM, Nicola NA
and Varghese LN: The molecular regulation of Janus kinase (JAK)
activation. Biochem J. 462:1–13. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chai HT, Yip HK, Sun CK, Hsu SY and Leu S:
AG490 suppresses EPO-mediated activation of JAK2-STAT but enhances
blood flow recovery in rats with critical limb ischemia. J Inflamm.
13:182016. View Article : Google Scholar
|
33
|
Tao Z, Cheng M, Wang SC, Lv W, Hu HQ, Li
CF and Cao BZ: JAK2/STAT3 pathway mediating inflammatory responses
in heatstroke-induced rats. Int J Clin Exp Pathol. 8:6732–6739.
2015.PubMed/NCBI
|
34
|
Ghoreschi K, Laurence A and O'Shea JJ:
Janus kinases in immune cell signaling. Immunol Rev. 228:273–287.
2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Du W, Hong J, Wang YC, Zhang YJ, Wang P,
Su WY, Lin YW, Lu R, Zou WP, Xiong H and Fang JY: Inhibition of
JAK2/STAT3 signalling induces colorectal cancer cell apoptosis via
mitochondrial pathway. J Cell Mol Med. 16:1878–1888. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang HH, Kuang S, Wang Y, Sun XX, Gu Y,
Hu LH and Yu Q: Bigelovin inhibits STAT3 signaling by inactivating
JAK2 and induces apoptosis in human cancer cells. Acta Pharmacol
Sin. 36:507–516. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Planas AM, Gorina R and Chamorro A:
Signalling pathways mediating inflammatory responses in brain
ischemia. Biochem Soc Trans. 34:1267–1270. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang Y, Zhao ZF, Han DW, Wang F, Xu RL
and Liu MS: Rapamycin-induced inhibition of Janus Kinase/signal
transducer and activator of transcription pathway affects
expression of high-mobility group box 1 in rats with acute liver
injury. World Chin J Dig. 14:1916–1920. 2006. View Article : Google Scholar
|
39
|
Li Y, Li KH, Wen SH, Li C, Li YS, Liu Y,
Zhang XY, Yao X and Liu KX: Role of JAK/STAT in intestinal injury
induced by intestinal ischemia/reperfusion in rats. Chin J
Pathophysiol. 27:2338–2344. 2011.
|
40
|
Sharma RA, Gescher AJ and Steward WP:
Curcumin: The story so far. Eur J Cancer. 41:1955–1968. 2005.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Esatbeyoglu T, Huebbe P, Ernst IM, Chin D,
Wagner AE and Rimbach G: Curcumin-from molecule to biological
function. Angew Chem Int Ed Engl. 51:5308–5332. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Weissenberger J, Priester M, Bernreuther
C, Rakel S, Glatzel M, Seifert V and Kögel D: Dietary curcumin
attenuates glioma growth in a syngeneic mouse model by inhibition
of the JAK1,2/STAT3 signaling pathway. Clin Cancer Res.
16:5781–5795. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Saydmohammed M, Joseph D and Syed V:
Curcumin suppresses constitutive activation of STAT-3 by
up-regulating protein inhibitor of activated STAT-3 (PIAS-3) in
ovarian and endometrial cancer cells. J Cell Biochem. 110:447–456.
2010.PubMed/NCBI
|