1
|
Xiong M, Li J, Alhashem HM, Tilak V, Patel
A, Pisklakov S, Siegel A, Ye JH and Bekker A: Propofol exposure in
pregnant rats induces neurotoxicity and persistent learning deficit
in the offspring. Brain Sci. 4:356–375. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ikonomidou C, Bosch F, Miksa M, Bittigau
P, Vöckler J, Dikranian K, Tenkova TI, Stefovska V, Turski L and
Olney JW: Blockade of NMDA receptors and apoptotic
neurodegeneration in the developing brain. Science. 283:70–74.
1999. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hayashi H, Dikkes P and Soriano SG:
Repeated administration of ketamine may lead to neuronal
degeneration in the developing rat brain. Paediatr Anaesth.
12:770–774. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jevtovic-Todorovic V and Olney JW: PRO:
Anesthesia-induced developmental neuroapoptosis: Status of the
evidence. Anesth Analg. 106:1659–1663. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Loepke AW and Soriano SG: An assessment of
the effects of general anesthetics on developing brain structure
and neurocognitive function. Anesth Analg. 106:1681–1707. 2008.
View Article : Google Scholar : PubMed/NCBI
|
6
|
McGowan FX Jr and Davis PJ:
Anesthetic-related neurotoxicity in the developing infant: Of mice,
rats, monkeys and, possibly, humans. Anesth Analg. 106:1599–602.
2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Van De Velde M and De Buck F: Anesthesia
for non-obstetric surgery in the pregnant patient. Minerva
Anestesiol. 73:235–240. 2007.PubMed/NCBI
|
8
|
Baldwin EA, Borowski KS, Brost BC and Rose
CH: Antepartum nonobstetrical surgery at ≥23 weeks' gestation and
risk for preterm delivery. Am J Obstet Gynecol. 212:232.e1–e5.
2015. View Article : Google Scholar
|
9
|
Chidambaran V, Costandi A and D'Mello A:
Propofol: A review of its role in pediatric anesthesia and
sedation. CNS Drugs. 29:543–563. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Krzisch M, Sultan S, Sandell J, Demeter K,
Vutskits L and Toni N: Propofol anesthesia impairs the maturation
and survival of adult-born hippocampal neurons. Anesthesiology.
118:602–610. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhong L, Luo F, Zhao W, Feng Y, Wu L, Lin
J, Liu T, Wang S, You X and Zhang W: Propofol exposure during late
stages of pregnancy impairs learning and memory in rat offspring
via the BDNF-TrkB signalling pathway. J Cell Mol Med. 20:1920–1931.
2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang Q, Luo F, Zhao W, Li B, Tang Y and
Hu Y: Effect of prolonged anesthesia with propofol during early
pregnancy on cognitive function of offspring rats. Chin J
Anesthesiol. 34:1051–1053. 2014.
|
13
|
Williams JM, Guévremont D, Kennard JT,
Mason-Parker SE, Tate WP and Abraham WC: Long-term regulation of
N-methyl-D-aspartate receptor subunits and associated synaptic
proteins following hippocampal synaptic plasticity. Neuroscience.
118:1003–1013. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Niimi K, Takahashi E and Itakura C:
Improved short-term memory and increased expression of NR2B
observed in senescence-accelerated mouse (SAM) P6. Exp Gerontol.
43:847–852. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
von Engelhardt J, Doganci B, Jensen V,
Hvalby Ø, Göngrich C, Taylor A, Barkus C, Sanderson DJ, Rawlins JN,
Seeburg PH, et al: Contribution of hippocampal and
extra-hippocampal NR2B-containing NMDA receptors to performance on
spatial learning tasks. Neuron. 60:846–860. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yildiz A and Selvin PR: Kinesin: Walking,
crawling or sliding along? Trends Cell Biol. 15:112–120. 2005.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Setou M, Nakagawa T, Seog DH and Hirokawa
N: Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA
receptor-containing vesicle transport. Science. 288:1796–1802.
2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Guillaud L, Wong R and Hirokawa N:
Disruption of KIF17-Mint1 interaction by CaMKII-dependent
phosphorylation: A molecular model of kinesin-cargo release. Nat
Cell Biol. 10:19–29. 2008. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Costa AC, Scott-McKean JJ and Stasko MR:
Acute injections of the NMDA receptor antagonist memantine rescue
performance deficits of the Ts65Dn mouse model of Down syndrome on
a fear conditioning test. Neuropsychopharmacology. 33:1624–1632.
2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guillaud L, Setou M and Hirokawa N: KIF17
dynamics and regulation of NR2B trafficking in hippocampal neurons.
J Neurosci. 23:131–140. 2003.PubMed/NCBI
|
21
|
Yin X, Takei Y, Kido MA and Hirokawa N:
Molecular motor KIF17 is fundamental for memory and learning via
differential support of synaptic NR2A/2B levels. Neuron.
70:310–325. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wong RW, Setou M, Teng J, Takei Y and
Hirokawa N: Overexpression of motor protein KIF17 enhances spatial
and working memory in transgenic mice. Proc Natl Acad Sci USA.
99:pp. 14500–14505. 2002; View Article : Google Scholar : PubMed/NCBI
|
23
|
Dong C, Rovnaghi CR and Anand KJ: Ketamine
alters the neurogenesis of rat cortical neural stem progenitor
cells. Criti Care Med. 40:2407–2416. 2012. View Article : Google Scholar
|
24
|
Tang XM, Qin Y, Liao CJ, Xie YB and Lan
YY: Effects of propofol on expression of hippocampal survivin and
Caspase-3 in newborn rats. Zhonghua Er Ke Za Zhi. 50:361–365.
2012.(In Chinese). PubMed/NCBI
|
25
|
Schubert H, Eiselt M, Walter B, Fritz H,
Brodhun M and Bauer R: Isoflurane/nitrous oxide anesthesia and
stress-induced procedures enhance neuroapoptosis in intrauterine
growth-restricted piglets. Intensive care Med. 38:1205–1214. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Zou X, Liu F, Zhang X, Patterson TA,
Callicott R, Liu S, Hanig JP, Paule MG, Slikker W Jr and Wang C:
Inhalation anesthetic-induced neuronal damage in the developing
rhesus monkey. Neurotoxicol Teratol. 33:592–597. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pain L, Angst MJ, LeGourrier L and
Oberling P: Effect of a nonsedative dose of propofol on memory for
aversively loaded information in rats. Anesthesiology. 97:447–453.
2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kahraman S, Zup SL, McCarthy MM and Fiskum
G: GABAergic mechanism of propofol toxicity in immature neurons. J
Neurosurg Anesthesiol. 20:233–40. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Karen T, Schlager GW, Bendix I, Sifringer
M, Herrmann R, Pantazis C, Enot D, Keller M, Kerner T and
Felderhoff-Mueser U: Effect of propofol in the immature rat brain
on short- and long-term neurodevelopmental outcome. PLoS One.
8:e644802013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yu D, Jiang Y, Gao J, Liu B and Chen P:
Repeated exposure to propofol potentiates neuroapoptosis and
long-term behavioral deficits in neonatal rats. Neurosci Lett.
534:41–46. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen B, Deng X, Wang B and Liu H:
Persistent neuronal apoptosis and synaptic loss induced by multiple
but not single exposure of propofol contribute to long-term
cognitive dysfunction in neonatal rats. J Toxicol Sci. 41:627–636.
2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yu D, Li L and Yuan W: Neonatal anesthetic
neurotoxicity: Insight into the molecular mechanisms of long-term
neurocognitive deficits. Biomed Pharmacother. 87:196–199. 2017.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee JE, Rayyan M, Liao A, Edery I and
Pletcher SD: Acute dietary restriction acts via TOR, PP2A, and Myc
signaling to boost innate immunity in Drosophila. Cell Rep.
20:479–490. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bekker AY and Weeks EJ: Cognitive function
after anaesthesia in the elderly. Best Pract Res Clin Anaesthesiol.
17:259–272. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Culley DJ, Baxter M, Yukhananov R and
Crosby G: The memory effects of general anesthesia persist for
weeks in young and aged rats. Anesth Analg. 96:1004–1009, table of
contents. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vutskits L, Gascon E, Tassonyi E and Kiss
JZ: Clinically relevant concentrations of propofol but not
midazolam alter in vitro dendritic development of isolated
gamma-aminobutyric acid-positive interneurons. Anesthesiology.
102:970–976. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tran KM: Anesthesia for fetal surgery.
Semin Fetal Neonatal Med. 15:40–45. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Reddy SV: Effect of general anesthetics on
the developing brain. J Anaesthesiol Clin Pharmacol. 28:6–10. 2012.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhao MG, Toyoda H, Lee YS, Wu LJ, Ko SW,
Zhang XH, Jia Y, Shum F, Xu H, Li BM, et al: Roles of NMDA NR2B
subtype receptor in prefrontal long-term potentiation and
contextual fear memory. Neuron. 47:859–872. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dalle S, Quoyer J, Varin E and Costes S:
Roles and regulation of the transcription factor CREB in pancreatic
β-cells. Curr Mol Pharmacol. 4:187–195. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Suzuki A, Fukushima H, Mukawa T, Toyoda H,
Wu LJ, Zhao MG, Xu H, Shang Y, Endoh K, Iwamoto T, et al:
Upregulation of CREB-mediated transcription enhances both short-
and long-term memory. J Neurosci. 31:8786–8802. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Barco A, Alarcon JM and Kandel ER:
Expression of constitutively active CREB protein facilitates the
late phase of long-term potentiation by enhancing synaptic capture.
Cell. 108:689–703. 2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Pittenger C, Huang YY, Paletzki RF,
Bourtchouladze R, Scanlin H, Vronskaya S and Kandel ER: Reversible
inhibition of CREB/ATF transcription factors in region CA1 of the
dorsal hippocampus disrupts hippocampus-dependent spatial memory.
Neuron. 34:447–462. 2002. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yin X, Feng X, Takei Y and Hirokawa N:
Regulation of NMDA receptor transport: a KIF17-cargo
binding/releasing underlies synaptic plasticity and memory in vivo.
J Neurosci. 32:5486–5499. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Vorhees CV and Williams MT: Assessing
spatial learning and memory in rodents. ILAR J. 55:310–332. 2014.
View Article : Google Scholar : PubMed/NCBI
|
46
|
He J, Zhao C, Liu W, Huang J, Liang S,
Chen L and Tao J: Neurochemical changes in the hippocampus and
prefrontal cortex associated with electroacupuncture for learning
and memory impairment. Int J Mol Med. 41:709–716. 2018.PubMed/NCBI
|
47
|
Nakai T, Nagai T, Tanaka M, Itoh N, Asai
N, Enomoto A, Asai M, Yamada S, Saifullah AB, Sokabe M, et al:
Girdin phosphorylation is crucial for synaptic plasticity and
memory: A potential role in the interaction of BDNF/TrkB/Akt
signaling with NMDA receptor. J Neurosci. 34:14995–15008. 2014.
View Article : Google Scholar : PubMed/NCBI
|