Open Access

WWC3 inhibits intimal proliferation following vascular injury via the Hippo signaling pathway

  • Authors:
    • Beijia Chen
    • Guinan Liu
  • View Affiliations

  • Published online on: January 25, 2018     https://doi.org/10.3892/mmr.2018.8484
  • Pages: 5175-5183
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The Hippo signaling pathway is involved in the formation and development of the cardiovascular system. In the present study, the effects of WWC family member 3 (WWC3) on vascular smooth muscle cells (VSMCs) following injury were investigated, in addition to the associated mechanisms underlying this process. Platelet‑derived growth factor BB (PDGF‑BB) was used as a cell injury factor, and rats with balloon injuries were used as a model of carotid intimal injury. Furthermore, the expression levels of WWC3 in VSMCs and arteries post‑injury were investigated, in addition to the effect of WWC3 on the proliferation and migration of VSMCs. The results demonstrated that following injury, WWC3 expression was suppressed in VSMCs and the rat carotid artery, and the activity of the Hippo signaling pathway was significantly downregulated. In addition, the expression of YY1‑associated protein‑1 (YAP) and a number of its downstream target genes, including connective tissue growth factor (CTGF), were enhanced, thus enhancing the proliferation and migration of VSMCs. Knockdown of WWC3 suppressed the levels of large tumor suppressor kinase 1 (LATS1) expression and YAP phosphorylation, and the expression of YAP, CTGF and cyclin E was subsequently enhanced, thus promoting cell proliferation and migration. Similar results were obtained following overexpression of WWC3. Treatment with PDGF‑BB was revealed to suppress the proliferation and migration of VSMCs transfected with the WWC3 plasmid, compared with VSMCs transfected with an empty vector. The present study demonstrated that WWC3 may interact with LATS1 in order to upregulate the Hippo signaling pathway via co‑immunoprecipitation and enhancement of the phosphorylation of LATS1, in addition to the corresponding suppression of the nuclear import of YAP. However, VSMCs transfected with WWC3 plasmid with a deletion of the WW domain fail to exhibit this effect. These results suggested that WWC3 expression is downregulated in VSMCs during neointimal hyperplasia following injury (PDGF‑BB stimulation or balloon injury). WWC3 upregulates the activity of the Hippo signaling pathway, and weakens the proliferation and migration of VSMCs. Furthermore, the results of the present study suggested that WWC3 may interact with LATS1 to promote the phosphorylation of YAP and reduce its nuclear translocation, upregulate the activity of the Hippo pathway, and suppress the proliferation and migration of VSMCs following injury.
View Figures
View References

Related Articles

Journal Cover

April-2018
Volume 17 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Chen B and Liu G: WWC3 inhibits intimal proliferation following vascular injury via the Hippo signaling pathway. Mol Med Rep 17: 5175-5183, 2018.
APA
Chen, B., & Liu, G. (2018). WWC3 inhibits intimal proliferation following vascular injury via the Hippo signaling pathway. Molecular Medicine Reports, 17, 5175-5183. https://doi.org/10.3892/mmr.2018.8484
MLA
Chen, B., Liu, G."WWC3 inhibits intimal proliferation following vascular injury via the Hippo signaling pathway". Molecular Medicine Reports 17.4 (2018): 5175-5183.
Chicago
Chen, B., Liu, G."WWC3 inhibits intimal proliferation following vascular injury via the Hippo signaling pathway". Molecular Medicine Reports 17, no. 4 (2018): 5175-5183. https://doi.org/10.3892/mmr.2018.8484