1
|
Goutham G, Manikandan R, Beulaja M,
Thiagarajan R, Arulvasu C, Arumugam M, Setzer WN, Daglia M, Nabavi
SF and Nabavi SM: A focus on resveratrol and ocular problems,
especially cataract: From chemistry to medical uses and clinical
relevance. Biomed Pharmacother. 86:232–241. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lee CM and Afshari NA: The global state of
cataract blindness. Curr Opin Ophthalmol. 28:98–103. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Fukuoka H and Afshari NA: The impact of
age-related cataract on measures of frailty in an aging global
population. Curr Opin Ophthalmol. 28:93–97. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Aditya BS, Sharma JC, Allen SC and
Vassallo M: Predictors of a nursing home placement from a non-acute
geriatric hospital. Clin Rehabil. 17:108–113. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Khanna RC, Murthy GV, Giridhar P,
Krishnaiah S, Pant HB, Palamaner Subash Shantha G, Chakrabarti S,
Gilbert C and Rao GN: Cataract, visual impairment and long-term
mortality in a rural cohort in India: The Andhra Pradesh Eye
Disease Study. PLoS One. 8:e780022013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kubota M, Shui YB, Liu M, Bai F, Huang AJ,
Ma N, Beebe DC and Siegfried CJ: Mitochondrial oxygen metabolism in
primary human lens epithelial cells: Association with age, diabetes
and glaucoma. Free Radic Biol Med. 97:513–519. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ebert MS and Sharp PA: Roles for microRNAs
in conferring robustness to biological processes. Cell.
149:515–524. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xu S: microRNA expression in the eyes and
their significance in relation to functions. Prog Retin Eye Res.
28:87–116. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dunmire JJ, Lagouros E, Bouhenni RA, Jones
M and Edward DP: MicroRNA in aqueous humor from patients with
cataract. Exp Eye Res. 108:68–71. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Szemraj M, Bielecka-Kowalska A, Oszajca K,
Krajewska M, Goś R, Jurowski P, Kowalski M and Szemraj J: Serum
MicroRNAs as potential biomarkers of AMD. Med Sci Monit.
21:2734–2742. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Qin Y, Zhao J, Min X, Wang M, Luo W, Wu D,
Yan Q, Li J, Wu X and Zhang J: MicroRNA-125b inhibits lens
epithelial cell apoptosis by targeting p53 in age-related cataract.
Biochim Biophys Acta. 1842:2439–2447. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang F, Meng W and Tong B:
Down-regulation of MicroRNA-133b suppresses apoptosis of lens
epithelial cell by up-regulating BCL2L2 in age-related cataracts.
Med Sci Monit. 22:4139–4145. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen L, Luo L, Chen W, Xu HX, Chen F, Chen
LZ, Zeng WT, Chen JS and Huang XH: MicroRNA-24 increases
hepatocellular carcinoma cell metastasis and invasion by targeting
p53: miR-24 targeted p53. Biomed Pharmacother. 84:1113–1118. 2016.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen W and Ou HS: Regulation of miR-24 on
vascular endothelial cell function and its role in the development
of cardiovascular disease. Sheng Li Xue Bao. 68:201–206. 2016.(In
Chinese). PubMed/NCBI
|
15
|
Yang J, Chen L, Ding J, Fan Z, Li S, Wu H,
Zhang J, Yang C, Wang H, Zeng P and Yang J: MicroRNA-24 inhibits
high glucose-induced vascular smooth muscle cell proliferation and
migration by targeting HMGB1. Gene. 586:268–273. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ertekin S, Yildirim O, Dinç E, Ayaz L,
Fidanci SB and Tamer L: Evaluation of circulating miRNAs in wet
age-related macular degeneration. Mol Vis. 20:1057–1066.
2014.PubMed/NCBI
|
17
|
Kutty RK, Samuel W, Jaworski C, Duncan T,
Nagineni CN, Raghavachari N, Wiggert B and Redmond TM: MicroRNA
expression in human retinal pigment epithelial (ARPE-19) cells:
Increased expression of microRNA-9 by
N-(4-hydroxyphenyl)retinamide. Mol Vis. 16:1475–1486.
2010.PubMed/NCBI
|
18
|
Wu C, Lin H, Wang Q, Chen W, Luo H, Chen W
and Zhang H: Discrepant expression of microRNAs in transparent and
cataractous human lenses. Invest Ophthalmol Vis Sci. 53:3906–3912.
2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Choi J and Donehower LA: p53 in embryonic
development: Maintaining a fine balance. Cell Mol Life Sci.
55:38–47. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lavker RM, Jia Yu and Ryan DG: The tiny
world of microRNAs in the cross hairs of the mammalian eye. Hum
Genomics. 3:332–348. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Beebe DC, Holekamp NM and Shui YB:
Oxidative damage and the prevention of age-related cataracts.
Ophthalmic Res. 44:155–165. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Brennan L, Khoury J and Kantorow M: Parkin
elimination of mitochondria is important for maintenance of lens
epithelial cell ROS levels and survival upon oxidative stress
exposure. Biochim Biophys Acta. 1863:21–32. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Acer S, Pekel G, Kucukatay V, Küçükatay V,
Karabulut A, Yağcı R, Çetin EN, Akyer ŞP and Şahin B: Oxidative
stress of crystalline lens in rat menopausal model. Arq Bras
Oftalmol. 79:222–225. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mohamed MF, Samir N, Ali A, Ahmed N, Ali
Y, Aref S, Hossam O, Mohamed MS, Abdelmoniem AM and Abdelhamid IA:
Apoptotic induction mediated p53 mechanism and Caspase-3 activity
by novel promising cyanoacrylamide derivatives in breast carcinoma.
Bioorg Chem. 73:43–52. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
López-Luppo M, Catita J, Ramos D, Navarro
M, Carretero A, Mendes-Jorge L, Muñoz-Cánoves P, Rodriguez-Baeza A,
Nacher V and Ruberte J: Cellular senescence is associated with
human retinal microaneurysm formation during aging. Invest
Ophthalmol Vis Sci. 58:2832–2842. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Moshrefi M, Spotin A, Kafil HS,
Mahami-Oskouei M, Baradaran B, Ahmadpour E and Mansoori B: Tumor
suppressor p53 induces apoptosis of host lymphocytes experimentally
infected by Leishmania major, by activation of Bax and caspase-3: A
possible survival mechanism for the parasite. Parasitol Res.
116:2159–2166. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mok JW, Chang DJ and Joo CK: Antiapoptotic
effects of anthocyanin from the seed coat of black soybean against
oxidative damage of human lens epithelial cell induced by H2O2.
Curr Eye Res. 39:1090–1098. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zheng T and Lu Y: SIRT1 protects human
lens epithelial cells against oxidative stress by inhibiting
p53-dependent apoptosis. Curr Eye Res. 41:1068–1075. 2016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Armand-Labit V and Pradines A: Circulating
cell-free microRNAs as clinical cancer biomarkers. Biomol Concepts.
8:61–81. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang Y, Yu T, Jiang S, Zhang Y, Li M, Tang
N, Ponnusamy M, Wang JX and Li PF: miRNAs as potential therapeutic
targets and diagnostic biomarkers for cardiovascular disease with a
particular focus on WO2010091204. Expert Opin Ther Pat.
27:1021–1029. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang S, Koster KM, He Y and Zhou Q: miRNAs
as potential therapeutic targets for age-related macular
degeneration. Future Med Chem. 4:277–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Seto AG: The road toward microRNA
therapeutics. Int J Biochem Cell Biol. 42:1298–1305. 2010.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Bruscella P, Bottini S, Baudesson C,
Pawlotsky JM, Feray C and Trabucchi M: Viruses and miRNAs: More
friends than foes. Front Microbiol. 8:8242017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ottosen S, Parsley TB, Yang L, Zeh K, van
Doorn LJ, van der Veer E, Raney AK, Hodges MR and Patick AK: In
vitro antiviral activity and preclinical and clinical resistance
profile of miravirsen, a novel anti-hepatitis C virus therapeutic
targeting the human factor miR-122. Antimicrob Agents Chemother.
59:599–608. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gebert LF, Rebhan MA, Crivelli SE, Denzler
R, Stoffel M and Hall J: Miravirsen (SPC3649) can inhibit the
biogenesis of miR-122. Nucleic Acids Res. 42:609–621. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Li X, Zhao F, Xin M, Li G, Luna C, Li G,
Zhou Q, He Y, Yu B, Olson E, et al: Regulation of intraocular
pressure by microRNA cluster miR-143/145. Sci Rep. 7:9152017.
View Article : Google Scholar : PubMed/NCBI
|
37
|
SanGiovanni JP, SanGiovanni PM, Sapieha P
and De Guire V: miRNAs, single nucleotide polymorphisms (SNPs) and
age-related macular degeneration (AMD). Clin Chem Lab Med.
55:763–775. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu D, Sun X and Ye P: miR-31
overexpression exacerbates atherosclerosis by targeting NOX4 in
apoE(−/−) mice. Clin Lab. 61:1617–1624. 2015.PubMed/NCBI
|
39
|
Zhou Q, Gallagher R, Ufret-Vincenty R, Li
X, Olson EN and Wang S: Regulation of angiogenesis and choroidal
neovascularization by members of microRNA-23~27~24 clusters. Proc
Natl Acad Sci USA. 108:pp. 8287–8292. 2011; View Article : Google Scholar : PubMed/NCBI
|
40
|
van Eijndhoven MA, Zijlstra JM,
Groenewegen NJ, Drees EE, van Niele S, Baglio SR, Koppers-Lalic D,
van der Voorn H, Libregts SF, Wauben MH, et al: Plasma vesicle
miRNAs for therapy response monitoring in Hodgkin lymphoma
patients. JCI Insight. 1:e896312016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kang H, Rho JG, Kim C, Tak H, Lee H, Ji E,
Ahn S, Shin AR, Cho HI, Huh YH, et al: The miR-24-3p/p130Cas: A
novel axis regulating the migration and invasion of cancer cells.
Sci Rep. 7:448472017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cui S, Liao X, Ye C, Yin X, Liu M, Hong Y,
Yu M, Liu Y, Liang H, Zhang CY and Chen X: ING5 suppresses breast
cancer progression and is regulated by miR-24. Mol Cancer.
16:892017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liu Z, Liu Z, Zhang Y, Li Y, Liu B and
Zhang K: miR-24 represses metastasis of human osteosarcoma cells by
targeting Ack1 via AKT/MMPs pathway. Biochem Biophys Res Commun.
486:211–217. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Li YQ, Lu JH, Bao XM, Wang XF, Wu JH and
Hong WQ: MiR-24 functions as a tumor suppressor in nasopharyngeal
carcinoma through targeting FSCN1. J Exp Clin Cancer Res.
34:1302015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhou Q, Anderson C, Zhang H, Li X, Inglis
F, Jayagopal A and Wang S: Repression of choroidal
neovascularization through actin cytoskeleton pathways by
microRNA-24. Mol Ther. 22:378–389. 2014. View Article : Google Scholar : PubMed/NCBI
|