1
|
Bernardo BC, Ooi JY, Lin RC and McMullen
JR: miRNA therapeutics: A new class of drugs with potential
therapeutic applications in the heart. Future Med Chem.
7:1771–1792. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kwekkeboom RF, Lei Z, Doevendans PA,
Musters RJ and Sluijter JP: Targeted delivery of miRNA therapeutics
for cardiovascular diseases: Opportunities and challenges. Clin Sci
(Lond). 127:351–365. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang Y, Wang S, Li Y, Zhang C, Xue J, Wu
X and Wang C: Relationship of microRNA 616 gene polymorphism with
prognosis of patients with premature coronary artery disease. Int J
Clin Pharmacol Ther. 54:899–903. 2016. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Li HY, Zhao X, Liu YZ, Meng Z, Wang D,
Yang F and Shi QW: Plasma MicroRNA-126-5p is associated with the
complexity and severity of coronary artery disease in patients with
stable angina pectoris. Cell Physiol Biochem. 39:837–846. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Cordes KR and Srivastava D: MicroRNA
regulation of cardiovascular development. Circ Res. 104:724–732.
2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cengiz M, Yavuzer S, Kılıçkıran Avcı B,
Yürüyen M, Yavuzer H, Dikici SA, Karataş ÖF, Özen M, Uzun H, Öngen
Z, et al: Circulating miR-21 and eNOS in subclinical
atherosclerosis in patients with hypertension. Clin Exp Hypertens.
37:643–649. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang J, Yan Y, Song D and Liu B: Reduced
plasma miR-146a is a predictor of poor coronary collateral
circulation in patients with coronary artery disease. Biomed Res
Int. 2016:42859422016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang J, Yan Y, Song D, Liu L and Liu B:
The association of plasma miR-155 and VCAM-1 levels with coronary
collateral circulation. Biomark Med. 11:125–131. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang M, Li W, Chang GQ, Ye CS, Ou JS, Li
XX, Liu Y, Cheang TY, Huang XL and Wang SM: MicroRNA-21 regulates
vascular smooth muscle cell function via targeting tropomyosin 1 in
arteriosclerosis obliterans of lower extremities. Arterioscler
Thromb Vasc Biol. 31:2044–2053. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hans FP, Moser M, Bode C and Grundmann S:
MicroRNA regulation of angiogenesis and arteriogenesis. Trends
Cardiovasc Med. 20:253–262. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rubanyi GM: Mechanistic, technical, and
clinical perspectives in therapeutic stimulation of coronary
collateral development by angiogenic growth factors. Mol Ther.
21:725–738. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liao LX, Zhao MB, Dong X, Jiang Y, Zeng KW
and Tu PF: TDB protects vascular endothelial cells against
oxygen-glucose deprivation/reperfusion-induced injury by targeting
miR-34a to increase Bcl-2 expression. Sci Rep. 6:379592016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang YQ, Cai AP, Chen JY, Huang C, Li J
and Feng YQ: The relationship of plasma miR-29a and oxidized low
density lipoprotein with atherosclerosis. Cell Physiol Biochem.
40:1521–1528. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Michell DL and Vickers KC: HDL and
microRNA therapeutics in cardiovascular disease. Pharmacol Ther.
168:43–52. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen B, Luo L, Zhu W, Wei X, Li S, Huang
Y, Liu M and Lin X: miR-22 contributes to the pathogenesis of
patients with coronary artery disease by targeting MCP-1: An
observational study. Medicine (Baltimore). 95:e44182016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Martin M: Cutadapt removes adapter
sequences from high-throughput sequencing reads. EMBnet Journal.
17:10–12. 2011. View Article : Google Scholar
|
17
|
Gordon A and Hannon GJ: Fastx-toolkit.
FASTQ/A short-reads pre-processing tools. 2010.http://hannonlab.cshl.edu/fastx_toolkit
|
18
|
Friedländer MR, Chen W, Adamidi C,
Maaskola J, Einspanier R, Knespel S and Rajewsky N: Discovering
microRNAs from deep sequencing data using miRDeep. Nat Biotechnol.
26:407–415. 2008. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Langmead B, Trapnell C, Pop M and Salzberg
SL: Ultrafast and memory-efficient alignment of short DNA sequences
to the human genome. Genome Biol. 10:R252009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li QB and Wang J: MIREAP: microRNA
discovery by deep sequencing. 2008.https://sourceforge.net/projects/mireap/
|
21
|
Kolde R: Pheatmap: pretty heatmaps. R
package version 061. 2012.https://www.r-project.org/
|
22
|
Betel D, Wilson M, Gabow A, Marks DS and
Sander C: The microRNA.org resource: targets and expression.
Nucleic Acids Res. 36:D149–153. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Najafi-Shoushtari SH, Kristo F, Li Y,
Shioda T, Cohen DE, Gerszten RE and Näär AM: MicroRNA-33 and the
SREBP host genes cooperate to control cholesterol homeostasis.
Science. 328:1566–1569. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rayner KJ, Suárez Y, Dávalos A, Parathath
S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ and
Fernández-Hernando C: MiR-33 contributes to the regulation of
cholesterol homeostasis. Science. 328:1570–1573. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ramírez CM, Rotllan N, Vlassov AV, Dávalos
A, Li M, Goedeke L, Aranda JF, Cirera-Salinas D, Araldi E, Salerno
A, et al: Control of cholesterol metabolism and plasma high-density
lipoprotein levels by microRNA-144. Circ Res. 112:1592–1601. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Fish JE, Santoro MM, Morton SU, Yu S, Yeh
RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY and Srivastava D:
miR-126 regulates angiogenic signaling and vascular integrity. Dev
Cell. 15:272–284. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang S, Aurora AB, Johnson BA, Qi X,
McAnally J, Hill JA, Richardson JA, Bassel-Duby R and Olson EN: The
endothelial-specific microRNA miR-126 governs vascular integrity
and angiogenesis. Dev Cell. 15:261–271. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ishida N and Kawakita M: Molecular
physiology and pathology of the nucleotide sugar transporter family
(SLC35). Pflugers Arch. 447:768–775. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Song Z: Roles of the nucleotide sugar
transporters (SLC35 family) in health and disease. Mol Aspects Med.
34:590–600. 2013. View Article : Google Scholar : PubMed/NCBI
|