1
|
WHO, . Global status report on alcohol and
health 2014. http://www.who.int/substance_abuse/publications/global_alcohol_report/en/2014.
|
2
|
National Institute of Alcohol Abuse
Alcoholism, . NIAAA council approves definition of binge drinking.
NIAAA Newsletter. 3:2004.https://pubs.niaaa.nih.gov/publications/Newsletter/winter2004/Newsletter_Number3.pdf
|
3
|
Goslawski M, Piano MR, Bian JT, Church EC,
Szczurek M and Phillips SA: Binge drinking impairs vascular
function in young adults. J Am Coll Cardiol. 62:201–207. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Llerena S, Arias-Loste MT, Puente A,
Cabezas J, Crespo J and Fábrega E: Binge drinking: Burden of liver
disease and beyond. World J Hepatol. 7:2703–2715. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Swain MG: Hepatic NKT cells: Friend or
foe? Clin Sci (Lond). 114:457–466. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gao B, Radaeva S and Park O: Liver natural
killer and natural killer T cells: Immunobiology and emerging roles
in liver diseases. J Leukoc Biol. 86:513–528. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jiang W, Sun R, Zhou R, Wei H and Tian Z:
TLR-9 activation aggravates concanavalin A-induced hepatitis via
promoting accumulation and activation of liver CD4+ NKT cells. J
Immunol. 182:3768–3774. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sköld M and Behar SM: Role of
CD1d-restricted NKT cells in microbial immunity. Infect Immun.
71:5447–5455. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wilson SB and Delovitch TL: Janus-like
role of regulatory iNKT cells in autoimmune disease and tumour
immunity. Nat Rev Immunol. 3:211–222. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Godfrey DI, Stankovic S and Baxter AG:
Raising the NKT cell family. Nat Immunol. 11:197–206. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Mathews S, Feng D, Maricic I, Ju C, Kumar
V and Gao B: Invariant natural killer T cells contribute to
chronic-plus-binge ethanol-mediated liver injury by promoting
hepatic neutrophil infiltration. Cell Mol Immunol. 13:206–216.
2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Maricic I, Sheng H, Marrero I, Seki E,
Kisseleva T, Chaturvedi S, Molle N, Mathews SA, Gao B and Kumar V:
Inhibition of type I natural killer T cells by retinoids or
following sulfatide-mediated activation of type II natural killer T
cells attenuates alcoholic liver disease in mice. Hepatology.
61:1357–1369. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang H, Feng D, Park O, Yin S and Gao B:
Invariant NKT cell activation induces neutrophil accumulation and
hepatitis: Opposite regulation by IL-4 and IFN-γ. Hepatology.
58:1474–1485. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee YS, Chanda D, Sim J, Park YY and Choi
HS: Structure and function of the atypical orphan nuclear receptor
small heterodimer partner. Int Rev Cytol. 261:117–158. 2007.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Tsuchiya H, da Costa KA, Lee S, Renga B,
Jaeschke H, Yang Z, Orena SJ, Goedken MJ, Zhang Y, Kong B, et al:
Interactions between nuclear receptor SHP and FOXA1 maintain
oscillatory homocysteine homeostasis in mice. Gastroenterology.
148:1012–1023.e14. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Seol W, Choi HS and Moore DD: An orphan
nuclear hormone receptor that lacks a DNA binding domain and
heterodimerizes with other receptors. Science. 272:1336–1339. 1996.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee HK, Lee YK, Park SH, Kim YS, Park SH,
Lee JW, Kwon HB, Soh J, Moore DD and Choi HS: Structure and
expression of the orphan nuclear receptor SHP gene. J Biol Chem.
273:14398–14402. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Park JE, Lee M, Mifflin R and Lee YK:
Enhanced ethanol catabolism in orphan nuclear receptor SHP-null
mice. Am J Physiol Gastrointest Liver Physiol. 310:G799–G807. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou Z, Wang L, Song Z, Lambert JC,
McClain CJ and Kang YJ: A critical involvement of oxidative stress
in acute alcohol-induced hepatic TNF-alpha production. Am J Pathol.
163:1137–1146. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen P, Wang Z, Zeng L, Yang X, Wang S,
Dong W, Jia A, Cai C and Zhang J: A novel soluble beta-glucan
salecan protects against acute alcohol-induced hepatotoxicity in
mice. Biosci Biotechnol Biochem. 75:1990–1993. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Council NR: Guide for the care and use of
laboratory animals. The National Academies Press; Washington, DC:
2010, PubMed/NCBI
|
22
|
Bligh EG and Dyer WJ: A rapid method of
total lipid extraction and purification. Can J Biochem Physiol.
37:911–917. 1959. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Ohkawa H, Ohishi N and Yagi K: Assay for
lipid peroxides in animal tissues by thiobarbituric acid reaction.
Anal Biochem. 95:351–358. 1979. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kawakami K, Kinjo Y, Uezu K, Yara S,
Miyagi K, Koguchi Y, Nakayama T, Taniguchi M and Saito A: Monocyte
chemoattractant protein-1-dependent increase of V alpha 14 NKT
cells in lungs and their roles in Th1 response and host defense in
cryptococcal infection. J Immunol. 167:6525–6532. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Metelitsa LS, Wu HW, Wang H, Yang Y, Warsi
Z, Asgharzadeh S, Groshen S, Wilson SB and Seeger RC: Natural
killer T cells infiltrate neuroblastomas expressing the chemokine
CCL2. J Exp Med. 199:1213–1221. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Biburger M and Tiegs G:
Alpha-galactosylceramide-induced liver injury in mice is mediated
by TNF-alpha but independent of Kupffer cells. J Immunol.
175:1540–1550. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Brennan PJ, Brigl M and Brenner MB:
Invariant natural killer T cells: An innate activation scheme
linked to diverse effector functions. Nat Rev Immunol. 13:101–117.
2013. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Cui K, Yan G, Xu C, Chen Y, Wang J, Zhou
R, Bai L, Lian Z, Wei H, Sun R and Tian Z: Invariant NKT cells
promote alcohol-induced steatohepatitis through interleukin-1β in
mice. J Hepatol. 62:1311–1318. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sawant KV, Xu R, Cox R, Hawkins H, Sbrana
E, Kolli D, Garofalo RP and Rajarathnam K: Chemokine CXCL1-mediated
neutrophil trafficking in the Lung: Role of CXCR2 activation. J
Innate Immun. 7:647–658. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sawant KV, Poluri KM, Dutta AK, Sepuru KM,
Troshkina A, Garofalo RP and Rajarathnam K: Chemokine CXCL1
mediated neutrophil recruitment: Role of glycosaminoglycan
interactions. Sci Rep. 6:331232016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wu N, Kim KH, Zhou Y, Lee JM, Kettner NM,
Mamrosh JL, Choi S, Fu L and Moore DD: Small Heterodimer Partner
(NR0B2) coordinates nutrient signaling and the circadian clock in
mice. Mol Endocrinol. 30:988–995. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ceni E, Mello T and Galli A: Pathogenesis
of alcoholic liver disease: Role of oxidative metabolism. World J
Gastroenterol. 20:17756–17772. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rao R: Endotoxemia and gut barrier
dysfunction in alcoholic liver disease. Hepatology. 50:638–644.
2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Szabo G: Gut-liver axis in alcoholic liver
disease. Gastroenterology. 148:30–36. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Baraona E and Lieber CS: Effects of
ethanol on lipid metabolism. J Lipid Res. 20:289–315.
1979.PubMed/NCBI
|
37
|
Wang HJ, Gao B, Zakhari S and Nagy LE:
Inflammation in alcoholic liver disease. Ann Rev Nutr. 32:343–368.
2012. View Article : Google Scholar
|
38
|
Ji C, Chan C and Kaplowitz N: Predominant
role of sterol response element binding proteins (SREBP) lipogenic
pathways in hepatic steatosis in the murine intragastric ethanol
feeding model. J Hepatol. 45:717–724. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yin HQ, Kim M, Kim JH, Kong G, Kang KS,
Kim HL, Yoon BI, Lee MO and Lee BH: Differential gene expression
and lipid metabolism in fatty liver induced by acute ethanol
treatment in mice. Toxicol Appl Pharmacol. 223:225–233. 2007.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Qiu P, Li X, Kong DS, Li HZ, Niu CC and
Pan SH: Herbal sgr formula prevents acute ethanol-induced liver
steatosis via inhibition of lipogenesis and enhancement fatty acid
oxidation in mice. Evid Based Complement Alternat Med.
2015:6135842015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mandrekar P, Bala S, Catalano D, Kodys K
and Szabo G: The opposite effects of acu and chronic alcohol on
lipopolysaccharide-induced inflammation are linked to IRAK-M in
human monocytes. J Immunol. 183:1320–1327. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Schmidt LE, Dalhoff K and Poulsen HE:
Acute versus chronic alcohol consumption in acetaminophen-induced
hepatotoxicity. Hepatology. 35:876–882. 2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mathurin P and Bataller R: Trends in the
management and burden of alcoholic liver disease. J Hepatol. 62 1
Suppl:S38–S46. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Rodríguez-Rodríguez E, González-Reimers E,
Santolaria-Fernández F, Milena-Abril A, Rodríguez-Moreno F,
Oramas-Rodríguez J and Martínez-Riera A: Cytokine levels in acute
alcoholic hepatitis: A sequential study. Drug Alcohol Depend.
39:23–27. 1995. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lívero FA and Acco A: Molecular basis of
alcoholic fatty liver disease: From incidence to treatment. Hepatol
Res. 46:111–123. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Nan YM, Wang RQ and Fu N: Peroxisome
proliferator-activated receptor α, a potential therapeutic target
for alcoholic liver disease. World J Gastroenterol. 20:8055–8060.
2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lívero FA, Stolf AM, Dreifuss AA,
Bastos-Pereira AL, Chicorski R, de Oliveira LG, de Souza CE,
Fabossi IA, Rabitto IS, Gremski LH, et al: The FXR agonist 6ECDCA
reduces hepatic steatosis and oxidative stress induced by ethanol
and low-protein diet in mice. Chem Biol Interact. 217:19–27. 2014.
View Article : Google Scholar : PubMed/NCBI
|