1
|
Wang Y, Lv Y, Wang L, Gong C, Sun J, Chen
X, Chen Y, Yang L, Zhang Y, Yang X, et al: MicroRNAome in decidua:
A new approach to assess the maintenance of pregnancy. Fertil
Steril. 103:980–989 e6. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhu LJ, Chen YP, Chen BJ and Mei XH:
Changes in reactive oxygen species, superoxide dismutase, and
hypoxia-inducible factor-1α levels in missed abortion. Int J Clin
Exp Med. 7:2179–2184. 2014.PubMed/NCBI
|
3
|
Tang L, Gao C, Gao L, Cui Y and Liu J:
Expression profile of micro-RNAs and functional annotation analysis
of their targets in human chorionic villi from early recurrent
miscarriage. Gene. 576:366–371. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ventura W, Koide K, Hori K, Yotsumoto J,
Sekizawa A, Saito H and Okai T: Placental expression of microRNA-17
and −19b is down-regulated in early pregnancy loss. Eur J Obstet
Gynecol Reprod Biol. 169:28–32. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Larsen EC, Christiansen OB, Kolte AM and
Macklon N: New insights into mechanisms behind miscarriage. BMC
Med. 11:1542013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Michels TC and Tiu AY: Second trimester
pregnancy loss. Am Fam Physician. 76:1341–1346. 2007.PubMed/NCBI
|
7
|
Dong F, Zhang Y, Xia F, Yang Y, Xiong S,
Jin L and Zhang J: Genome-wide miRNA profiling of villus and
decidua of recurrent spontaneous abortion patients. Reproduction.
148:33–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rull K, Nagirnaja L and Laan M: Genetics
of recurrent miscarriage: Challenges, current knowledge, future
directions. Front Genet. 3:342012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tsochandaridis M, Nasca L, Toga C and
Levy-Mozziconacci A: Circulating MicroRNAs as clinical biomarkers
in the predictions of pregnancy complications. Biomed Res Int.
2015:2949542015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Esteller M: Non-coding RNAs in human
disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Luo L, Ye G, Nadeem L, Fu G, Yang BB,
Honarparvar E, Dunk C, Lye S and Peng C: MicroRNA-378a-5p promotes
trophoblast cell survival, migration and invasion by targeting
Nodal. J Cell Sci. 125:3124–3132. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li Y and Kowdley KV: MicroRNAs in common
human diseases. Genomics Proteomics Bioinformatics. 10:246–253.
2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li Z and Rana TM: Therapeutic targeting of
microRNAs: Current status and future challenges. Nat Rev Drug
Discov. 13:622–638. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gu Y, Sun J, Groome LJ and Wang Y:
Differential miRNA expression profiles between the first and third
trimester human placentas. Am J Physiol Endocrinol Metab.
304:E836–E843. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu XM, Han T, Sargent IL, Yin GW and Yao
YQ: Differential expression profile of microRNAs in human placentas
from preeclamptic pregnancies vs normal pregnancies. Am J Obstet
Gynecol. 200:661.e1–7. 2009. View Article : Google Scholar
|
16
|
Fu G, Brkić J, Hayder H and Peng C:
MicroRNAs in human placental development and pregnancy
complications. Int J Mol Sci. 14:5519–5544. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lo YM, Corbetta N, Chamberlain PF, Rai V,
Sargent IL, Redman CW and Wainscoat JS: Presence of fetal DNA in
maternal plasma and serum. Lancet. 350:485–487. 1997. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao Z, Moley KH and Gronowski AM:
Diagnostic potential for miRNAs as biomarkers for
pregnancy-specific diseases. Clin Biochem. 46:953–960. 2013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Lanza G, Ferracin M, Gafà R, Veronese A,
Spizzo R, Pichiorri F, Liu CG, Calin GA, Croce CM and Negrini M:
mRNA/microRNA gene expression profile in microsatellite unstable
colorectal cancer. Mol Cancer. 6:542007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Siristatidis C, Vogiatzi P, Brachnis N,
Liassidou A, Iliodromiti Z, Bettocchi S and Chrelias C: Review:
MicroRNAs in assisted reproduction and their potential role in IVF
failure. In Vivo. 29:169–175. 2015.PubMed/NCBI
|
22
|
Sun YM, Lin KY and Chen YQ: Diverse
functions of miR-125 family in different cell contexts. J Hematol
Oncol. 6:62013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hu Y, Liu CM, Qi L, He TZ, Shi-Guo L, Hao
CJ, Cui Y, Zhang N, Xia HF and Ma X: Two common SNPs in
pri-miR-125a alter the mature miRNA expression and associate with
recurrent pregnancy loss in a Han-Chinese population. RNA Biol.
85:861–872. 2011. View Article : Google Scholar
|
24
|
Li D and Li J: Association of
miR-34a-3p/5p, miR-141-3p/5p, and miR-24 in decidual natural killer
cells with unexplained recurrent spontaneous abortion. Med Sci
Monit. 22:922–929. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Salleh N and Giribabu N: Leukemia
inhibitory factor: Roles in embryo implantation and in nonhormonal
contraception. ScientificWorldJournal. 2014:2015142014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ninio-Many L, Grossman H, Shomron N,
Chuderland D and Shalgi R: microRNA-125a-3p reduces cell
proliferation and migration by targeting Fyn. J Cell Sci.
126:2867–2876. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang H, Zhu X, Li N, Li D, Sha Z, Zheng X
and Wang H: miR-125a-3p targets MTA1 to suppress NSCLC cell
proliferation, migration, and invasion. Acta Biochim Biophys Sin
(Shanghai). 47:496–503. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guo X, Wu Y and Hartley RS: MicroRNA-125a
represses cell growth by targeting HuR in breast cancer. RNA Biol.
6:575–583. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tiwari A, Shivananda S, Gopinath KS and
Kumar A: MicroRNA-125a reduces proliferation and invasion of oral
squamous cell carcinoma cells by targeting estrogen-related
receptor α: Implications for cancer therapeutics. J Biol Chem.
289:32276–32290. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Choi HK, Choi BC, Lee SH, Kim JW, Cha KY
and Baek KH: Expression of angiogenesis- and apoptosis-related
genes in chorionic villi derived from recurrent pregnancy loss
patients. Mol Reprod Dev. 66:24–31. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gu H, Li H, Zhang L, Luan H, Huang T, Wang
L, Fan Y, Zhang Y, Liu X, Wang W and Yuan Z: Diagnostic role of
microRNA expression profile in the serum of pregnant women with
fetuses with neural tube defects. J Neurochem. 122:641–649. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Nardelli C, Iaffaldano L, Ferrigno M,
Labruna G, Maruotti GM, Quaglia F, Capobianco V, Di Noto R, Del
Vecchio L, Martinelli P, et al: Characterization and predicted role
of the microRNA expression profile in amnion from obese pregnant
women. Int J Obes (Lond). 38:466–469. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fisher JN, Terao M, Fratelli M, Kurosaki
M, Paroni G, Zanetti A, Gianni M, Bolis M, Lupi M, Tsykin A, et al:
MicroRNA networks regulated by all-trans retinoic acid and
Lapatinib control the growth, survival and motility of breast
cancer cells. Oncotarget. 6:13176–13200. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sand M, Skrygan M, Sand D, Georgas D,
Gambichler T, Hahn SA, Altmeyer P and Bechara FG: Comparative
microarray analysis of microRNA expression profiles in primary
cutaneous malignant melanoma, cutaneous malignant melanoma
metastases, and benign melanocytic nevi. Cell Tissue Res.
351:85–98. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Peng J, Feng Y, Rinaldi G, Levine P,
Easley S, Martinez E, Hashmi S, Sadeghi N, Brindley PJ, Mulvenna
JP, et al: Profiling miRNAs in nasopharyngeal carcinoma FFPE tissue
by microarray and next generation sequencing. Genom Data.
2:285–289. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chiyomaru T, Yamamura S, Fukuhara S,
Hidaka H, Majid S, Saini S, Arora S, Deng G, Shahryari V, Chang I,
et al: Genistein up-regulates tumor suppressor microRNA-574-3p in
prostate cancer. PLoS One. 8:e589292013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gitenay D, Lallet-Daher H and Bernard D:
Caspase-2 regulates oncogene-induced senescence. Oncotarget.
5:5845–5847. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Vanbekbergen N, Hendrickx M and Leyns L:
Growth differentiation Factor 11 is an encephalic regionalizing
factor in neural differentiated mouse embryonic stem cells. BMC Res
Notes. 7:7662014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang L, Wang L and Zheng Y: Gene targeting
of Cdc42 and Cdc42GAP affirms the critical involvement of Cdc42 in
filopodia induction, directed migration, and proliferation in
primary mouse embryonic fibroblasts. Mol Biol Cell. 17:4675–4685.
2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Large MJ, Wetendorf M, Lanz RB, Hartig SM,
Creighton CJ, Mancini MA, Kovanci E, Lee KF, Threadgill DW, Lydon
JP, et al: The epidermal growth factor receptor critically
regulates endometrial function during early pregnancy. PLoS Genet.
10:e10044512014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bao SH, Shuai W, Tong J, Wang L, Chen P
and Duan T: Increased Dickkopf-1 expression in patients with
unexplained recurrent spontaneous miscarriage. Clin Exp Immunol.
172:437–443. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jin YX, Cui XS, Han YJ and Kim NH: Leptin
accelerates pronuclear formation following intracytoplasmic sperm
injection of porcine oocytes: Possible role for MAP kinase
inactivation. Anim Reprod Sci. 115:137–148. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xiao B, Xue X, Hu F, Sun R, Chen Q, Yang M
and Zhang W: Expression and regulatory mechanism of microRNA-155 in
the villi of patients with unexplained recurrent spontaneous
abortion patients. Zhonghua Fu Chan Ke Za Zhi. 49:130–134. 2014.(In
Chinese). PubMed/NCBI
|
44
|
Qin W, Tang Y, Yang N, Wei X and Wu J:
Potential role of circulating microRNAs as a biomarker for
unexplained recurrent spontaneous abortion. Fertil Steril.
105:1247–1254 e3. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Luque A, Farwati A, Crovetto F, Crispi F,
Figueras F, Gratacós E and Aran JM: Usefulness of circulating
microRNAs for the prediction of early preeclampsia at
first-trimester of pregnancy. Sci Rep. 4:48822014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Al-Shorafa H and Sharif FA: MicroRNA in a
case of unexplained recurrent pregnancy loss. J Clin Case Rep.
02:2382012. View Article : Google Scholar
|
47
|
Petracco R, Grechukhina O, Popkhadze S,
Massasa E, Zhou Y and Taylor HS: MicroRNA 135 regulates HOXA10
expression in endometriosis. J Clin Endocrinol Metab.
96:E1925–E1933. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Shi H, Ji Y, Zhang D, Liu Y and Fang P:
MiR-135a inhibits migration and invasion and regulates EMT-related
marker genes by targeting KLF8 in lung cancer cells. Biochem
Biophys Res Commun. 465:125–130. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Navarro A, Diaz T, Martinez A, Gaya A,
Pons A, Gel B, Codony C, Ferrer G, Martinez C, Montserrat E and
Monzo M: Regulation of JAK2 by miR-135a: Prognostic impact in
classic Hodgkin lymphoma. Blood. 114:2945–2951. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Ishihara N, Matsuo H, Murakoshi H,
Laoag-Fernandez JB, Samoto T and Maruo T: Increased apoptosis in
the syncytiotrophoblast in human term placentas complicated by
either preeclampsia or intrauterine growth retardation. Am J Obstet
Gynecol. 185:158–166. 2002. View Article : Google Scholar
|
51
|
Zhang ZW, Li H, Chen SS, Li Y, Cui ZY and
Ma J: MicroRNA-122 regulates caspase-8 and promotes the apoptosis
of mouse cardiomyocytes. Braz J Med Biol Res. 50:e57602017.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Ma L, Liu J, Shen J, Liu L, Wu J, Li W,
Luo J, Chen Q and Qian C: Expression of miR-122 mediated by
adenoviral vector induces apoptosis and cell cycle arrest of cancer
cells. Cancer Biol Ther. 9:554–561. 2010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW,
Chen CM, Lin CD, Liao YL, Wang JL, Chau YP, et al: MicroRNA-122, a
tumor suppressor microRNA that regulates intrahepatic metastasis of
hepatocellular carcinoma. Hepatology. 49:1571–1582. 2009.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Lasabová Z, Vazan M, Zibolenova J and
Svecova I: Overexpression of miR-21 and miR-122 in preeclamptic
placentas. Neuro Endocrinol Lett. 36:695–699. 2015.PubMed/NCBI
|
55
|
Ding Z, Wang X, Schnackenberg L, Khaidakov
M, Liu S, Singla S, Dai Y and Mehta JL: Regulation of autophagy and
apoptosis in response to ox-LDL in vascular smooth muscle cells,
and the modulatory effects of the microRNA hsa-let-7g. Int J
Cardiol. 168:1378–1385. 2013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Chen Z, Lai TC, Jan YH, Lin FM, Wang WC,
Xiao H, Wang YT, Sun W, Cui X, Li YS, et al: Hypoxia-responsive
miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest.
123:1057–1067. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Du H, Sarno J and Taylor HS: HOXA10
inhibits Kruppel-like factor 9 expression in the human endometrial
epithelium. Biol Reprod. 83:205–211. 2010. View Article : Google Scholar : PubMed/NCBI
|
58
|
Tokyol C, Aktepe F, Husniye Dilek F and
Yilmazer M: Comparison of placental PTEN and beta1 integrin
expression in early spontaneous abortion, early and late normal
pregnancy. Ups J Med Sci. 113:235–242. 2008. View Article : Google Scholar : PubMed/NCBI
|
59
|
Bao MH, Feng X, Zhang YW, Lou XY, Cheng Y
and Zhou HH: Let-7 in cardiovascular diseases, heart development
and cardiovascular differentiation from stem cells. Int J Mol Sci.
14:23086–23102. 2013. View Article : Google Scholar : PubMed/NCBI
|
60
|
Qin B, Xiao B, Liang D, Li Y, Jiang T and
Yang H: MicroRNA let-7c inhibits Bcl-×l expression and regulates
ox-LDL-induced endothelial apoptosis. BMB Rep. 45:464–469. 2012.
View Article : Google Scholar : PubMed/NCBI
|