1
|
White PM, Doetzlhofer A, Lee YS, Groves AK
and Segil N: Mammalian cochlear supporting cells can divide and
trans-differentiate into hair cells. Nature. 441:984–987. 2006.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Sinkkonen ST, Chai R, Jan TA, Hartman BH,
Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K and Heller S:
Intrinsic regenerative potential of murine cochlear supporting
cells. Sci Rep. 1:262011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shi F, Kempfle JS and Edge AS:
Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors
in the cochlea. J Neurosci. 32:9639–9648. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Diensthuber M, Oshima K and Heller S:
Stem/progenitor cells derived from the cochlear sensory epithelium
give rise to spheres with distinct morphologies and features. J
Assoc Res Otolaryngol. 10:173–190. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Oshima K, Grimm CM, Corrales CE, Senn P,
Martinez Monedero R, Géléoc GS, Edge A, Holt JR and Heller S:
Differential distribution of stem cells in the auditory and
vestibular organs of the inner ear. J Assoc Res Otolaryngol.
8:18–31. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Collins K and Mitchell JR: Telomerase in
the human organism. Oncogene. 21:564–579. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Choi J, Southworth LK, Sarin KY,
Venteicher AS, Ma W, Chang W, Cheung P, Jun S, Artandi MK, Shah N,
et al: TERT promotes epithelial proliferation through
transcriptional control of a Myc- and Wnt-related developmental
program. PLoS Genet. 4:e102008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sarin KY, Cheung P, Gilison D, Lee E,
Tennen RI, Wang E, Artandi MK, Oro AE and Artandi SE: Conditional
telomerase induction causes proliferation of hair follicle stem
cells. Nature. 436:1048–1052. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gage FH: Mammalian neural stem cells.
Science. 287:1433–1438. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chai R, Kuo B, Wang T, Liaw EJ, Xia A, Jan
TA, Liu Z, Taketo MM, Oghalai JS, Nusse R, et al: Wnt signaling
induces proliferation of sensory precursors in the postnatal mouse
cochlea. Proc Natl Acad Sci USA. 109:pp. 8167–8172. 2012;
View Article : Google Scholar : PubMed/NCBI
|
11
|
Li W, Wu J, Yang J, Sun S, Chai R, Chen ZY
and Li H: Notch inhibition induces mitotically generated hair cells
in mammalian cochleae via activating the Wnt pathway. Proc Natl
Acad Sci USA. 112:pp. 166–171. 2014; View Article : Google Scholar : PubMed/NCBI
|
12
|
Harley CB and Villeponteau B: Telomeres
and telomerase in aging and cancer. Curr Opin Genet Dev. 5:249–255.
1995. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huffman KE, Levene SD, Tesmer VM, Shay JW
and Wright WE: Telomere shortening is proportional to the size of
the G-rich telomeric 3′-overhang. J Biol Chem. 275:19719–19722.
2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Schneider RP, Garrobo I, Foronda M,
Palacios JA, Marion RM, Flores I, Ortega S and Blasco MA: TRF1 is a
stem cell marker and is essential for the generation of induced
pluripotent stem cells. Nat Commun. 4:19462013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Okamoto K, Bartocci C, Ouzounov I,
Diedrich JK, Yates JR III and Denchi EL: A two-step mechanism for
TRF2-mediated chromosome-end protection. Nature. 494:502–505. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Miller AS, Balakrishnan L, Buncher NA,
Opresko PL and Bambara RA: Telomere proteins POT1, TRF1 and TRF2
augment long-patch base excision repair in vitro. Cell Cycle.
11:998–1007. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
McKerlie M, Lin S and Zhu XD: ATM
regulates proteasome-dependent subnuclear localization of TRF1,
which is important for telomere maintenance. Nucleic Acids Res.
40:3975–3989. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xie Y, Zhao X, Jia H and Ma B: Derivation
and characterization of goat fetal fibroblast cells induced with
human telomerase reverse transcriptase. In Vitro Cell Dev Biol
Anim. 49:8–14. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu XQ, Huang C, He X, Tian YY, Zhou DX, He
Y, Liu XH and Li J: Feedback regulation of telomerase reverse
transcriptase: New insight into the evolving field of telomerase in
cancer. Cell Signal. 25:2462–2468. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Singhapol C, Pal D, Czapiewski R, Porika
M, Nelson G and Saretzki GC: Mitochondrial telomerase protects
cancer cells from nuclear DNA damage and apoptosis. PLoS One.
8:e529892013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Plantinga MJ, Pascarelli KM, Merkel AS,
Lazar AJ, von Mehren M, Lev D and Broccoli D: Telomerase suppresses
formation of ALT-associated single-stranded telomeric C-circles.
Mol Cancer Res. 11:557–567. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cong Y and Shay JW: Actions of human
telomerase beyond telomeres. Cell Res. 18:725–732. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ahmed S, Passos JF, Birket MJ, Beckmann T,
Brings S, Peters H, Birch-Machin MA, von Zglinicki T and Saretzki
G: Telomerase does not counteract telomere shortening but protects
mitochondrial function under oxidative stress. J Cell Sci.
121:1046–1053. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hao LY, Armanios M, Strong MA, Karim B,
Feldser DM, Huso D and Greider CW: Short telomeres, even in the
presence of telomerase, limit tissue renewal capacity. Cell.
123:1121–1131. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Whitlon DS: E-cadherin in the mature and
developing organ of Corti of the mouse. J Neurocytol. 22:1030–1038.
1993. View Article : Google Scholar : PubMed/NCBI
|
26
|
Senn P, Oshima K, Teo D, Grimm C and
Heller S: Robust postmortem survival of murine vestibular and
cochlear stem cells. J Assoc Res Otolaryngol. 8:194–204. 2007.
View Article : Google Scholar : PubMed/NCBI
|