1
|
Szuszkiewicz-Garcia MM and Davidson JA:
Cardiovascular disease in diabetes mellitus: Risk factors and
medical therapy. Endocrinol Metab Clin North Am. 43:25–40. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Rathmann W and Giani G: Global prevalence
of diabetes: Estimates for the year 2000 and projections for 2030.
Diabetes Care. 27:2568–2569. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Katsiki N, Purrello F, Tsioufis C and
Mikhailidis DP: Cardiovascular disease prevention strategies for
type 2 diabetes mellitus. Expert Opin Pharmacother. 18:1243–1260.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Baron R: Peripheral neuropathic pain: From
mechanisms to symptoms. Clin J Pain. 16 2 Suppl:S12–S20. 2000.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Wu JR, Chen H, Yao YY, Zhang MM, Jiang K,
Zhou B, Zhang DX and Wang J: Local injection to sciatic nerve of
dexmedetomidine reduces pain behaviors, SGCs activation, NGF
expression and sympathetic sprouting in CCI Rats. Brain Res Bull.
132:118–128. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ji RR, Chamessian A and Zhang YQ: Pain
regulation by non-neuronal cells and inflammation. Science.
354:572–577. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hanani M: Role of satellite glial cells in
gastrointestinal pain. Front Cell Neurosci. 9:4122015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xu H, Wu B, Jiang F, Xiong S, Zhang B, Li
G, Liu S, Gao Y, Xu C, Tu G, et al: High fatty acids modulate
P2×(7) expression and Il-6 release via the P38 Mapk pathway in Pc12
cells. Brain Res Bull. 94:63–70. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Namekawa J, Takagi Y, Wakabayashi K,
Nakamura Y, Watanabe A, Nagakubo D, Shirai M and Asai F: Effects of
high-fat diet and fructose-rich diet on obesity, dyslipidemia and
hyperglycemia in the Wbn/Kob-Lepr(Fa) rat, a new model of type 2
diabetes mellitus. J Vet Med Sci. 79:988–991. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ruan X: Long Non-Coding Rna central of
glucose homeostasis. J Cell Biochem. 117:1061–1065. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kornfeld JW, Baitzel C, Könner AC,
Nicholls HT, Vogt MC, Herrmanns K, Scheja L, Haumaitre C, Wolf AM,
Knippschild U, et al: Obesity-induced overexpression of miR-802
impairs glucose metabolism through silencing of Hnf1b. Nature.
494:111–115. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fan B, Gu JQ, Yan R, Zhang H, Feng J and
Ikuyama S: High glucose, insulin and free fatty acid concentrations
synergistically enhance perilipin 3 expression and lipid
accumulation in macrophages. Metabolism. 62:1168–1179. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Singh H, Brindle NP and Zammit VA: High
glucose and elevated fatty acids suppress signaling by the
endothelium protective ligand angiopoietin-1. Microvasc Res.
79:121–127. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Burnstock G: P2× ion channel receptors and
inflammation. Purinergic Signal. 12:59–67. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Baudelet D, Lipka E, Millet R and Ghinet
A: Involvement of the P2×7 purinergic receptor in inflammation: An
update of antagonists series since 2009 and their promising
therapeutic potential. Curr Med Chem. 22:713–729. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Faria RX, Freitas HR and Reis RAM: P2×7
receptor large pore signaling in avian muller glial cells. J
Bioenerg Biomembr. 49:215–229. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kwok ZH and Tay Y: Long noncoding RNAs:
Lincs between human health and disease. Biochem Soc Trans.
45:805–812. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun M and Kraus WL: From discovery to
function: The expanding roles of long noncoding RNAs in physiology
and disease. Endocr Rev. 36:25–64. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu Z, Liu X, Liu L, Deng H, Zhang J, Xu Q,
Cen B and Ji A: Regulation of lncRNA expression. Cell Mol Biol
Lett. 19:561–575. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Taylor DH, Chu ET, Spektor R and Soloway
PD: Long non-coding RNA regulation of reproduction and development.
Mol Reprod Dev. 82:932–956. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu C, Tao J, Wu H, Yang Y, Chen Q, Deng
Z, Liu J and Xu C: Effects of LncRNA BC168687 SiRNA on diabetic
neuropathic pain mediated by P2X7 receptor on SGCs in DRG of rats.
Biomed Res Int. 2017:78312512017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jones-Bolin S: Guidelines for the care and
use of laboratory animals in biomedical research. Curr Protoc
Pharmacol Appendix. 4:Appendix 4B2012.
|
23
|
Hirose H, Lee YH, Inman LR, Nagasawa Y,
Johnson JH and Unger RH: Defective fatty acid-mediated beta-cell
compensation in Zucker diabetic fatty rats. pathogenic implications
for obesity-dependent diabetes. J Biol Chem. 271:5633–5637. 1996.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu H, He L, Liu C, Tang L, Xu Y, Xiong M,
Yang M, Fan Y, Hu F, Liu X, et al: LncRNA NONRATT021972 SiRNA
attenuates P2X7 receptor expression and inflammatory cytokine
production induced by combined high glucose and free fatty acids in
PC12 Cells. Purinergic Signal. 12:259–268. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu S, Zou L, Xie J, Xie W, Wen S, Xie Q,
Gao Y, Li G, Zhang C, Xu C, et al: LncRNA NONRATT021972 siRNA
regulates neuropathic pain behaviors in type 2 diabetic rats
through the P2X7 receptor in dorsal root ganglia. Mol Brain.
9:442016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Inoue K: Neuropharmacological study of ATP
receptors, especially in the relationship between Glia and Pain.
Yakugaku Zasshi. 137:563–569. 2017.(In Japanese). View Article : Google Scholar : PubMed/NCBI
|
27
|
Laursen JC, Cairns BE, Kumar U, Somvanshi
RK, Dong XD, Arendt-Nielsen L and Gazerani P: Nitric oxide release
from trigeminal satellite glial cells is attenuated by glial
modulators and glutamate. Int J Physiol Pathophysiol Pharmacol.
5:228–238. 2013.PubMed/NCBI
|
28
|
Gwak YS, Hulsebosch CE and Leem JW:
Neuronal-Glial interactions maintain chronic neuropathic pain after
spinal cord injury. Neural Plast. 2017:24806892017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chung MK, Asgar J, Lee J, Shim MS, Dumler
C and Ro JY: The role of Trpm2 in hydrogen peroxide-induced
expression of inflammatory cytokine and chemokine in rat trigeminal
ganglia. Neuroscience. 297:160–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Taft RJ, Pang KC, Mercer TR, Dinger M and
Mattick JS: Non-Coding RNAs: Regulators of disease. J Pathol.
220:126–139. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fitzgerald KA and Caffrey DR: Long
noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol.
26:140–146. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lutz BM, Bekker A and Tao YX: Noncoding
RNAs: New players in chronic pain. Anesthesiology. 121:409–417.
2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wu P, Zuo X, Deng H, Liu X, Liu L and Ji
A: Roles of long noncoding RNAs in brain development, functional
diversification and neurodegenerative diseases. Brain Res Bull.
97:69–80. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ma B, Gao Z, Lou J, Zhang H, Yuan Z, Wu Q,
Li X and Zhang B: Long noncoding RNA MEG3 contributes to
cisplatininduced apoptosis via inhibition of autophagy in human
glioma cells. Mol Med Rep. 16:2946–2952. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kobayashi K, Yamanaka H and Noguchi K:
Expression of ATP receptors in the rat dorsal root ganglion and
spinal cord. Anat Sci Int. 88:10–16. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Inoue K: P2 receptors and chronic pain.
Purinergic Signal. 3:135–144. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Skaper SD, Debetto P and Giusti P: The
P2×7 purinergic receptor: From physiology to neurological
disorders. FASEB J. 24:337–345. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sperlágh B, Vizi ES, Wirkner K and Illes
P: P2×7 receptors in the nervous system. Prog Neurobiol.
78:327–346. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Amaral PP, Clark MB, Gascoigne DK, Dinger
ME and Mattick JS: lncRNAdb: A reference database for long
noncoding RNAs. Nucleic Acids Res. 39(Database Issue): D146–D151.
2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Maass PG, Luft FC and Bähring S: Long
non-coding RNA in health and disease. J Mol Med (Berl). 92:337–346.
2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Simionescu-Bankston A and Kumar A:
Noncoding RNAs in the regulation of skeletal muscle biology in
health and disease. J Mol Med (Berl). 94:853–866. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jarvis MF and Khakh BS: ATP-gated P2X
cation-channels. Neuropharmacology. 56:208–215. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Caseley EA, Muench SP, Fishwick CW and
Jiang LH: Structure-based identification and characterisation of
structurally novel human P2X7 receptor antagonists. Biochem
Pharmacol. 116:130–139. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Volonté C, Apolloni S, Skaper SD and
Burnstock G: P2X7 receptors: Channels, pores and more. CNS Neurol
Disord Drug Targets. 11:705–721. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wei L, Caseley E, Li D and Jiang LH:
ATP-induced P2X receptor-dependent large pore formation: How much
do we know? Front Pharmacol. 7:52016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Dubyak GR: Go it alone no more-P2X7 joins
the society of heteromeric ATP-gated receptor channels. Mol
Pharmacol. 72:1402–1405. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wu H, Yang L and Chen LL: The diversity of
long noncoding RNAs and their generation. Trends Genet. 33:540–552.
2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li
YJ, Tao ZF, Song YC, Chen Q and Jiang Q: lncRNA-MIAT regulates
microvascular dysfunction by functioning as a competing endogenous
RNA. Circ Res. 116:1143–1156. 2015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Peiró C, Lorenzo Ó, Carraro R and
Sánchez-Ferrer CF: IL-1β inhibition in cardiovascular complications
associated to diabetes mellitus. Front Pharmacol. 8:3632017.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Kojima S, Ohshima Y, Nakatsukasa H and
Tsukimoto M: Role of ATP as a key signaling molecule mediating
radiation-induced biological effects. Dose Response.
15:15593258176906382017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lee JH, Zhang Y, Zhao Z, Ye X, Zhang X,
Wang H and Ye J: Intracellular ATP in balance of pro- and
anti-inflammatory cytokines in adipose tissue with and without
tissue expansion. Int J Obes (Lond). 41:645–651. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Blum E, Procacci P, Conte V and Hanani M:
Systemic inflammation alters satellite glial cell function and
structure. A possible contribution to pain. Neuroscience.
274:209–217. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Mima A: Inflammation and oxidative stress
in diabetic nephropathy: New insights on its inhibition as new
therapeutic targets. J Diabetes Res. 2013:2485632013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Liu Y, Wang Z, Xie W, Gu Z, Xu Q and Su L:
Oxidative stress regulates mitogenactivated protein kinases and
c-Jun activation involved in heat stress and
lipopolysaccharideinduced intestinal epithelial cell apoptosis. Mol
Med Rep. 16:2579–2587. 2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ji RR, Berta T and Nedergaard M: Glia and
pain: Is chronic pain a gliopathy? Pain. 154 Suppl 1:S10–S28. 2013.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Ponnusamy M, Liu N, Gong R, Yan H and
Zhuang S: ERK pathway mediates P2×7 expression and cell death in
renal interstitial fibroblasts exposed to necrotic renal epithelial
cells. Am J Physiol Renal Physiol. 301:F650–F659. 2011. View Article : Google Scholar : PubMed/NCBI
|
58
|
Ji RR, Gereau RW IV, Malcangio M and
Strichartz GR: MAP kinase and pain. Brain Res Rev. 60:135–148.
2009. View Article : Google Scholar : PubMed/NCBI
|
59
|
Son Y, Kim S, Chung HT and Pae HO:
Reactive oxygen species in the activation of MAP kinases. Methods
Enzymol. 528:27–48. 2013. View Article : Google Scholar : PubMed/NCBI
|