1
|
Martis PC, Whitsett JA, Yan X, Perl AT,
Wan HJ and Ikegami M: C/EBPalpha is required for lung maturation at
birth. Development. 133:1155–1164. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang XQ, Zhang P, Yang Y, Qiu J, Kan Q,
Liang HL, Zhou XY and Zhou XG: Regulation of pulmonary surfactant
synthesis in fetal rat type II alveolar epithelial cells by
microRNA-26a. Pediatr Pulmonol. 49:863–872. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Brasch F, Schimanski Sven, Muhlfeld C,
Barlage S, Langmann T, Aslanidis C, Boettcher A, Dada A, Schroten
H, Mildenberger E, et al: Alteration of the pulmonary surfactant
system in full-term infants with hereditary ABCA3 deficiency. Am J
Respir Crit Care Med. 174:571–580. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gesche J, Fehrenbach H, Koslowski R, Ohler
FM, Pynn CJ, Griese M, Poets CF and Bernhard W: rhKGF stimulates
lung surfactant production in neonatal rats in vivo. Pediatr
Pulmonol. 46:882–895. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Han S and Mallampalli RK: The Role of
Surfactant in lung disease and host defense against pulmonary
infections. Ann Am Thorac Soc. 12:765–774. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jin J, Li YC, Ren JG, Lam SM, Zhang YD,
Hou Y, Zhang XJ, Xu R, Shui GH and Ma RZ: Neonatal respiratory
failure with retarded perinatal lung maturation in mice caused by
reticulocalbin 3 disruption. Am J Respir Cell Mol Biol. 54:410–423.
2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
El-Gendy N, Kaviratna A, Berkland C and
Dhar P: Delivery and performance of surfactant replacement
therapies to treat pulmonary disorders. Ther Deliv. 4:951–980.
2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Herriges M and Morrisey EE: Lung
development: Orchestrating the generation and regeneration of a
complex organ. Development. 141:502–513. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang Y, Kai G, Pu XD, Qing K, Guo XR and
Zhou XY: Expression profile of microRNAs in fetal lung development
of sprague-dawley rats. Int J Mol Med. 29:393–402. 2012.PubMed/NCBI
|
10
|
Williams AE, Moschos SA, Perry MM, Barnes
PJ and Lindsay MA: Maternally imprinted microRNAs are
differentially expressed during mouse and human lung development.
Dev Dyn. 236:572–580. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sun JP, Chen H, Chen C, Whitsett JA,
Mishina Y, Bringas P Jr, Ma JC, Warburton D and Shi W: Prenatal
lung epithelial cell-specific abrogation of Alk3-bone morphogenetic
protein signaling causes neonatal respiratory distress by
disrupting distal airway formation. Am J Pathol. 172:571–582. 2008.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Orgeig S, Morrison JL and Daniels CB:
Prenatal development of the pulmonary surfactant system and the
influence of hypoxia. Respir Physiol Neurobiol. 178:129–145. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Jinek M, Chylinski K, Fonfara I, Hauer M,
Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA
endonuclease in adaptive bacterial immunity. Science. 337:816–821.
2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wiedenheft B, Sternberg SH and Doudna JA:
RNA-guided genetic silencing systems in bacteria and archaea.
Nature. 482:331–338. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu
M, Li Y, Gao N, Wang L, Lu X, et al: Heritable gene targeting in
the mouse and rat using a CRISPR-Cas system. Nat Biotechnol.
31:681–683. 2013. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang
L, Kang Y, Zhao X, Si W, Li W, et al: Generation of gene-modified
cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell
embryos. Cell. 156:836–843. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang YH, Wu LZ, Liang HL, Yang Y, Qiu J,
Kan Q, Zhu W, Ma CL and Zhou XY: Pulmonary surfactant synthesis in
miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the
CRISPR/Cas9 system. Am J Transl Res. 9:355–365. 2017.PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2 (-Dalta Dalta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
King G, Maker GL, Berryman D, Trengove RD
and Cake MH: Role of neuregulin-1beta in dexamethasone-enhanced
surfactant synthesis in fetal type II cells. FEBS Lett.
588:975–980. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Smith LJ, McKay KO, Asperen PP, Selvadurai
H and Fitzgerald DA: Normal development of the lung and premature
birth. Paediatr Respir Rev. 11:135–142. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Carraro G, El-Hashash A, Guidolin D,
Tiozzo C, Turcatel G, Young BM, Langhe SP, Bellusci S, Shi W,
Parnigotto PP and Warburton D: miR-17 family of microRNAs controls
FGF10-mediated embryonic lung epithelial branching morphogenesis
through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev
Biol. 333:238–250. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nana-Sinkam SP, Karsies T, Riscili B,
Ezzie M and Piper M: Lung microRNA: From development to disease.
Expert Rev Respir Med. 3:373–385. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bhaskaran M, Wang Y, Zhang HH, Weng TT,
Baviskar P, Guo YJ, Gou DM and Liu L: MicroRNA-127 modulates fetal
lung development. Physiol Genomics. 37:268–278. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Deng JJ, He MX, Chen LZ, Chen C, Zheng JM
and Cai ZL: The loss of miR-26a-mediated post-transcriptional
regulation of cyclin E2 in pancreatic cancer cell proliferation and
decreased patient survival. PLoS One. 8:e764502013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tan YW, Ge GH, Pan TL, Wen DF, Chen L, Yu
XJ, Zhou XB and Gan JH: A serum microRNA panel as potential
biomarkers for hepatocellular carcinoma related with hepatitis B
virus. PLoS One. 9:e1079862014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Salvatori B, Iosue I, Mangiavacchi A,
Loddo G, Padula F, Chiaretti S, Peragine N, Bozzoni I, Fazi F and
Fatica A: The microRNA-26a target E2F7 sustains cell proliferation
and inhibits monocytic differentiation of acute myeloid leukemia
cells. Cell Death Dis. 3:e4132012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ichikawa T, Sato F, Terasawa K, Tsuchiya
S, Toi M, Tsujimoto G and Shimizu K: Trastuzumab produces
therapeutic actions by upregulating miR-26a and miR-30b in breast
cancer cells. PLoS One. 7:e314222012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen C, Chen H, Sun J, Bringas P Jr, Chen
Y, Warburton D and Shi W: Smad1 expression and function during
mouse embryonic lung branching morphogenesis. Am J Physiol Lung
Cell Mol Physiol. 288:L1033–1039. 2005. View Article : Google Scholar : PubMed/NCBI
|