The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells
- Authors:
- Jiangzhou Peng
- Zigang Yu
- Lei Xue
- Jiabin Wang
- Jun Li
- Degang Liu
- Qiang Yang
- Yihui Lin
-
Affiliations: Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China, Department of Thoracic Surgery, Shanwei People's Hospital, Shanwei, Guangdong 516600, P.R. China, Department of Neurology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China - Published online on: February 13, 2018 https://doi.org/10.3892/mmr.2018.8606
- Pages: 5860-5868
-
Copyright: © Peng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wang J, Jia Y, Zhao S, Zhang X, Wang X, Han X, Wang Y, Ma M, Shi J and Liu L: BIN1 reverses PD-L1-mediated immune escape by inactivating the c-MYC and EGFR/MAPK signaling pathways in non-small cell lung cancer. Oncogene. 36:6235–6243. 2017. View Article : Google Scholar : PubMed/NCBI | |
McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, Birkbak NJ, Veeriah S, Van Loo P, Herrero J, et al: Allele-Specific HLA loss and immune escape in lung cancer evolution. Cell. 171:1259–1271.e11. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schafer CC, Wang Y, Hough KP, Sawant A, Grant SC, Thannickal VJ, Zmijewski J, Ponnazhagan S and Deshane JS: Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment. Oncotarget. 7:75407–75424. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chan R, Sethi P, Jyoti A, McGarry R and Upreti M: Investigating the radioresistant properties of lung cancer stem cells in the context of the tumor microenvironment. Radiat Res. 185:169–181. 2016. View Article : Google Scholar : PubMed/NCBI | |
Taylor JG and Gribben JG: Microenvironment abnormalities and lymphomagenesis: Immunological aspects. Semin Cancer Biol. 34:36–45. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Pan K and Xia JC: Interaction of indoleamine-2,3-dioxyagnase and CD4+CD25+ regulatory T cells in tumor immune escape. Ai Zheng. 28:184–187. 2009.PubMed/NCBI | |
Qu Y, Zhang B, Zhao L, Liu G, Ma H, Rao E, Zeng C and Zhao Y: The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+T cells in mice. Transpl Immunol. 17:153–161. 2007. View Article : Google Scholar : PubMed/NCBI | |
Long SA and Buckner JH: CD4+FOXP3+ T regulatory cells in human autoimmunity: More than a numbers game. J Immunol. 187:2061–2066. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW and Tang ZY: Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 25:2586–2593. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H and Fujii H: Localisation pattern of Foxp3+ regulatory T cells is associated with clinical behaviour in gastric cancer. Br J Cancer. 98:148–153. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wei T, Zhang J, Qin Y, Wu Y, Zhu L, Lu L, Tang G and Shen Q: Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients. Am J Cancer Res. 5:2190–2201. 2015.PubMed/NCBI | |
Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, et al: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 520:373–377. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang WJ, Tao Z, Gu W and Sun LH: Variation of blood T lymphocyte subgroups in patients with non-small cell lung cancer. Asian Pac J Cancer Prev. 14:4671–4673. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schneider T, Kimpfler S, Warth A, Schnabel PA, Dienemann H, Schadendorf D, Hoffmann H and Umansky V: Foxp3(+) regulatory T cells and natural killer cells distinctly infiltrate primary tumors and draining lymph nodes in pulmonary adenocarcinoma. J Thorac Oncol. 6:432–438. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xue L, Chen J, Peng JZ, Chen BS, Hua P and Yang YQ: Clinical significance of tumor interstitial T lymphocyte subset activity in non-small-cell lung cancer. Nan Fang Yi Ke Da Xue Xue Bao. 29:2456–2458. 2009.(In Chinese). PubMed/NCBI | |
Verma C, Eremin JM, Robins A, Bennett AJ, Cowley GP, El-Sheemy MA, Jibril JA and Eremin O: Abnormal T regulatory cells (Tregs: FOXP3+, CTLA-4+), myeloid-derived suppressor cells (MDSCs: Monocytic, granulocytic) and polarised T helper cell profiles (Th1, Th2, Th17) in women with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC) and surgery: Failure of abolition of abnormal treg profile with treatment and correlation of treg levels with pathological response to NAC. J Transl Med. 11:162013. View Article : Google Scholar : PubMed/NCBI | |
Vacchelli E, Semeraro M, Enot DP, Chaba K, Poirier Colame V, Dartigues P, Perier A, Villa I, Rusakiewicz S, Gronnier C, et al: Negative prognostic impact of regulatory T cell infiltration in surgically resected esophageal cancer post-radiochemotherapy. Oncotarget. 6:20840–20850. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Ko JS, Shin Y, Cho JY, Oh HA, Bothwell AL and Lee SK: Intranuclear interactomic inhibition of FoxP3 suppresses functions of Treg cells. Biochem Biophys Res Commun. 451:1–7. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu R, Ribick M, Zheng P and Liu Y: FOXP3 as an X-linked tumor suppressor. Discov Med. 10:322–328. 2010.PubMed/NCBI | |
Katoh H, Zheng P and Liu Y: Signalling through FOXP3 as an X-linked tumor suppressor. Int J Biochem Cell Biol. 42:1784–1787. 2010. View Article : Google Scholar : PubMed/NCBI | |
Granville CA, Memmott RM, Balogh A, Mariotti J, Kawabata S, Han W, Lopiccolo J, Foley J, Liewehr DJ, Steinberg SM, et al: A central role for Foxp3+ regulatory T cells in K-Ras-driven lung tumorigenesis. PLoS One. 4:e50612009. View Article : Google Scholar : PubMed/NCBI | |
Luo Q, Zhang S, Wei H, Pang X and Zhang H: Roles of Foxp3 in the occurrence and development of cervical cancer. Int J Clin Exp Pathol. 8:8717–8730. 2015.PubMed/NCBI | |
O'Callaghan DS, Rexhepaj E, Gately K, Coate L, Delaney D, O'Donnell DM, Kay E, O'Connell F, Gallagher WM and O'Byrne KJ: Tumour islet Foxp3+ T-cell infiltration predicts poor outcome in nonsmall cell lung cancer. Eur Respir J. 46:1762–1772. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li D, Yang W, Fu H, Liu Y and Li Y: Overexpression of the transcription factor FOXP3 in lung adenocarcinoma sustains malignant character by promoting G1/S transition gene CCND1. Tumour Biol. 37:7395–7404. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA and Dirnhofer S: Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica. 93:193–200. 2008. View Article : Google Scholar : PubMed/NCBI | |
Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, Mosseri V, Laccourreye O, Bruneval P, Fridman WH, et al: Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 12:465–472. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ladoire S, Arnould L, Mignot G, Coudert B, Rébé C, Chalmin F, Vincent J, Bruchard M, Chauffert B, Martin F, et al: Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 125:65–72. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanke T, Melling N, Simon R, Sauter G, Bokemeyer C, Lebok P, Terracciano LM, Izbicki JR and Marx AH: High intratumoral FOXP3+ T regulatory cell (Tregs) density is an independent good prognosticator in nodal negative colorectal cancer. Int J Clin Exp Pathol. 8:8227–8235. 2015.PubMed/NCBI | |
Zhang T, Shao B and Liu GA: Rosuvastatin promotes the differentiation of peripheral blood monocytes into M2 macrophages in patients with atherosclerosis by activating PPAR-γ. Eur Rev Med Pharmacol Sci. 21:4464–4471. 2017.PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yin H, Guo C, Wang Y, Liu D, Lv Y, Lv F and Lu Z: Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anticancer Drugs. 24:587–598. 2013.PubMed/NCBI | |
Del Monte U and Statuto M: Drop of connexins: A possible link between aging and cancer? Exp Gerontol. 39:273–275. 2004. View Article : Google Scholar : PubMed/NCBI | |
AlHilli MM, Hopkins MR and Famuyide AO: Endometrial cancer after endometrial ablation: Systematic review of medical literature. J Minim Invasive Gynecol. 18:393–400. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi S: Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 22:531–562. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zelenay S, Lopes-Carvalho T, Caramalho I, Moraes-Fontes MF, Rebelo M and Demengeot J: Foxp3+ CD25-CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci USA. 102:pp. 4091–4096. 2005; View Article : Google Scholar : PubMed/NCBI | |
Hansmann L, Schmidl C, Kett J, Steger L, Andreesen R, Hoffmann P, Rehli M and Edinger M: Dominant Th2 differentiation of human regulatory T cells upon loss of FOXP3 expression. J Immunol. 188:1275–1282. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Barbi J and Pan F: The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 17:703–717. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marie JC, Letterio JJ, Gavin M and Rudensky AY: TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med. 201:1061–1067. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tsang JY, Camara NO, Eren E, Schneider H, Rudd C, Lombardi G and Lechler R: Altered proximal T cell receptor (TCR) signaling in human CD4+CD25+ regulatory T cells. J Leukoc Biol. 80:145–151. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI and Tone M: Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 9:194–202. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jana S, Jailwala P, Haribhai D, Waukau J, Glisic S, Grossman W, Mishra M, Wen R, Wang D, Williams CB and Ghosh S: The role of NF-kappaB and Smad3 in TGF-beta-mediated Foxp3 expression. Eur J Immunol. 39:2571–2583. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim HP and Leonard WJ: CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: A role for DNA methylation. J Exp Med. 204:1543–1551. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K and Rudensky AY: Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 463:808–812. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee KJ, Moon JY, Choi HK, Kim HO, Hur GY, Jung KH, Lee SY, Kim JH, Shin C, Shim JJ, et al: Immune regulatory effects of simvastatin on regulatory T cell-mediated tumour immune tolerance. Clin Exp Immunol. 161:298–305. 2010.PubMed/NCBI | |
Haxhinasto S, Mathis D and Benoist C: The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med. 205:565–574. 2008. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, van der Veeken J, Shugay M, Putintseva EV, Osmanbeyoglu HU, Dikiy S, Hoyos BE, Moltedo B, Hemmers S, Treuting P, et al: A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature. 528:132–136. 2015.PubMed/NCBI | |
Richter MV and Topham DJ: The alpha1beta1 integrin and TNF receptor II protect airway CD8+ effector T cells from apoptosis during influenza infection. J Immunol. 179:5054–5063. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ghourbani Gazar S, Andalib A, Hashemi M and Rezaei A: CD4+Foxp3+ Treg and its ICOS+ subsets in patients with myocardial infarction. Iran J Immunol. 9:53–60. 2012.PubMed/NCBI | |
Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R, Migliorati G and Riccardi C: A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA. 94:pp. 6216–6221. 1997; View Article : Google Scholar : PubMed/NCBI | |
Zhang NN, Chen JN, Xiao L, Tang F, Zhang ZG, Zhang YW, Feng ZY, Jiang Y and Shao CK: Accumulation mechanisms of CD4(+)CD25(+)FOXP3(+) regulatory T cells in EBV-associated gastric carcinoma. Sci Rep. 5:180572015. View Article : Google Scholar : PubMed/NCBI | |
Tan B, Anaka M, Deb S, Freyer C, Ebert LM, Chueh AC, Al-Obaidi S, Behren A, Jayachandran A, Cebon J, et al: FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis. Oncotarget. 5:264–276. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Dou Y, Xu X, Wang X, Xu B, Du J, Wang Q, Li Q and Wang J: Endogenous FOXP3 inhibits cell proliferation, migration and invasion in glioma cells. Int J Clin Exp Med. 8:1792–1802. 2015.PubMed/NCBI | |
Zhang L, Xu J, Zhang X, Zhang Y, Wang L, Huang X and Xu Z: The role of tumoral FOXP3 on cell proliferation, migration, and invasion in gastric cancer. Cell Physiol Biochem. 42:1739–1754. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moreno Ayala MA, Gottardo MF, Imsen M, Asad AS, Bal de Kier Joffé E, Casares N, Lasarte JJ, Seilicovich A and Candolfi M: Therapeutic blockade of Foxp3 in experimental breast cancer models. Breast Cancer Res Treat. 166:393–405. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Yang Z, Wang Z, Li Z, Li H, Yin J, Deng M, Zhu W and Zeng C: Foxp3 is correlated with VEGF-C expression and lymphangiogenesis in cervical cancer. World J Surg Oncol. 15:1732017. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Liu C, Chen D, Yang WH, Liu X, Liu CG, Dugas CM, Tang F, Zheng P, Liu Y and Wang L: FOXP3 controls an miR-146/NF-kB negative feedback loop that inhibits apoptosis in breast cancer cells. Cancer Res. 75:1703–1713. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nakahira K, Morita A, Kim NS and Yanagihara I: Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion. PLoS One. 8:e770992013. View Article : Google Scholar : PubMed/NCBI | |
Endres M, Kneitz S, Orth MF, Perera RK, Zernecke A and Butt E: Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1). Oncotarget. 7:64244–64259. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, et al: Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 109:625–637. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ishibashi M, Fujimura T, Hashimoto A, Haga T, Onami K, Tsukada A, Kambayashi Y, Hidaka T, Furudate S, Shimada R and Aiba S: Successful treatment of MMP-9-expressing angiosarcoma with low-dose docetaxel and bisphosphonate. Case Rep Dermatol. 4:5–9. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li H, Qiu Z, Li F and Wang C: The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett. 14:5865–5870. 2017.PubMed/NCBI | |
Zhang S, Wu M, Zhao Y, Gu R, Peng C, Liu J, Zhu Q and Li Y: Correlation of MMP-9 and p53 protein expression with prognosis in metastatic spinal tumor of lung cancer. Oncol Lett. 14:5452–5456. 2017.PubMed/NCBI | |
Dufour A, Sampson NS, Zucker S and Cao J: Role of the hemopexin domain of matrix metalloproteinases in cell migration. J Cell Physiol. 217:643–651. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dayer C and Stamenkovic I: Recruitment of matrix metalloproteinase-9 (MMP-9) to the fibroblast cell surface by Lysyl hydroxylase 3 (LH3) triggers transforming growth factor-β (TGF-β) activation and fibroblast differentiation. J Biol Chem. 290:13763–13778. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mirastschijski U, Schnabel R, Claes J, Schneider W, Agren MS, Haaksma C and Tomasek JJ: Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function. Wound Repair Regen. 18:223–234. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang BQ, Zhang CM, Gao W, Wang XF, Zhang HL and Yang PC: Cancer-derived matrix metalloproteinase-9 contributes to tumor tolerance. J Cancer Res Clin Oncol. 137:1525–1533. 2011. View Article : Google Scholar : PubMed/NCBI | |
Benevides L, Cardoso CR, Tiezzi DG, Marana HR, Andrade JM and Silva JS: Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 43:1518–1528. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Peng C, Lu X, Ding X, Zhang S, Zou X and Zhang X: Downregulation of FOXP3 inhibits invasion and immune escape in cholangiocarcinoma. Biochem Biophys Res Commun. 458:234–239. 2015. View Article : Google Scholar : PubMed/NCBI | |
Miossec P, Korn T and Kuchroo VK: Interleukin-17 and type 17 helper T cells. N Engl J Med. 361:888–898. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hayata K, Iwahashi M, Ojima T, Katsuda M, Iida T, Nakamori M, Ueda K, Nakamura M, Miyazawa M, Tsuji T and Yamaue H: Inhibition of IL-17A in tumor microenvironment augments cytotoxicity of tumor-infiltrating lymphocytes in tumor-bearing mice. PLoS One. 8:e531312013. View Article : Google Scholar : PubMed/NCBI | |
Morawski PA, Mehra P, Chen C, Bhatti T and Wells AD: Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem. 288:24494–24502. 2013. View Article : Google Scholar : PubMed/NCBI | |
Batson J, Astin JW and Nobes CD: Regulation of contact inhibition of locomotion by Eph-ephrin signalling. J Microsc. 251:232–241. 2013. View Article : Google Scholar : PubMed/NCBI |