1
|
Brann DW, Dhandapani K, Wakade C, Mahesh
VB and Khan MM: Neurotrophic and neuroprotective actions of
estrogen: Basic mechanisms and clinical implications. Steroids.
72:381–405. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rocca WA, Grossardt BR and Shuster LT:
Oophorectomy, menopause, estrogen treatment, and cognitive aging:
Clinical evidence for a window of opportunity. Brain Res.
1379:188–198. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shuster LT, Rhodes DJ, Gostout BS,
Grossardt BR and Rocca WA: Premature menopause or early menopause:
Long-term health consequences. Maturitas. 65:161–166. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wassertheil-Smoller S, Hendrix SL,
Limacher M, Heiss G, Kooperberg C, Baird A, Kotchen T, Curb JD,
Black H, Rossouw JE, et al: Effect of estrogen plus progestin on
stroke in postmenopausal women: The Women's Health Initiative: A
randomized trial. JAMA. 289:2673–2684. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Espeland MA, Rapp SR, Shumaker SA, Brunner
R, Manson JE, Sherwin BB, Hsia J, Margolis KL, Hogan PE, Wallace R,
et al: Conjugated equine estrogens and global cognitive function in
postmenopausal women: Women's Health Initiative Memory Study. JAMA.
291:2959–2968. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Santen RJ, Allred DC, Ardoin SP, Archer
DF, Boyd N, Braunstein GD, Burger HG, Colditz GA, Davis SR,
Gambacciani M, et al: Postmenopausal hormone therapy: An Endocrine
Society scientific statement. J Clin Endocrinol Metab. 95 7 Suppl
1:S1–S66. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sherwin BB: The critical period
hypothesis: Can it explain discrepancies in the oestrogen-cognition
literature? J Neuroendocrinol. 19:77–81. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sherwin BB: Estrogen therapy: Is time of
initiation critical for neuroprotection? Nat Rev Endocrinol.
5:620–627. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Craig MC and Murphy DG: Estrogen therapy
and Alzheimer's dementia. Ann N Y Acad Sci. 1205:245–253. 2010.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Gibbs RB: Estrogen therapy and cognition:
A review of the cholinergic hypothesis. Endocr Rev. 31:224–253.
2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Moura PJ and Petersen SL: Estradiol acts
through nuclear- and membrane-initiated mechanisms to maintain a
balance between GABAergic and glutamatergic signaling in the brain:
Implications for hormone replacement therapy. Rev Neurosci.
21:363–380. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Boulware MI, Kent BA and Frick KM: The
impact of age-related ovarian hormone loss on cognitive and neural
function. Curr Top Behav Neurosci. 10:165–184. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Daniel JM and Bohacek J: The critical
period hypothesis of estrogen effects on cognition: Insights from
basic research. Biochim Biophys Acta. 1800:1068–1076. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Prossnitz ER and Barton M: The
G-protein-coupled estrogen receptor GPER in health and disease. Nat
Rev Endocrinol. 7:715–726. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gingerich S, Kim GL, Chalmers JA, Koletar
MM, Wang X, Wang Y and Belsham DD: Estrogen receptor alpha and
G-protein coupled receptor 30 mediate the neuroprotective effects
of 17β-estradiol in novel murine hippocampal cell models.
Neuroscience. 170:54–66. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu SB, Han J, Zhang N, Tian Z, Li XB and
Zhao MG: Neuroprotective effects of oestrogen against oxidative
toxicity through activation of G-protein-coupled receptor 30
receptor. Clin Exp Pharmacol Physiol. 38:577–585. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang B, Subramanian S, Dziennis S, Jia J,
Uchida M, Akiyoshi K, Migliati E, Lewis AD, Vandenbark AA, Offner H
and Hurn PD: Estradiol and G1 reduce infarct size and improve
immunosuppression after experimental stroke. J Immunol.
184:4087–4094. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kosaka Y, Quillinan N, Bond C, Traystman
R, Hurn P and Herson P: GPER1/GPR30 activation improves neuronal
survival following global cerebral ischemia induced by cardiac
arrest in mice. Transl Stroke Res. 3:500–507. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tang H, Zhang Q, Yang L, Dong Y, Khan M,
Yang F, Brann DW and Wang R: GPR30 mediates estrogen rapid
signaling and neuroprotection. Mol Cell Endocrinol. 387:52–58.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang QG, Han D, Wang RM, Dong Y, Yang F,
Vadlamudi RK and Brann DW: C terminus of Hsc70-interacting protein
(CHIP)-mediated degradation of hippocampal estrogen receptor-alpha
and the critical period hypothesis of estrogen neuroprotection.
Proc Natl Acad Sci USA. 108:pp. E617–E624. 2011; View Article : Google Scholar : PubMed/NCBI
|
21
|
Stephenson W: Deficiencies in the National
Institute of Health's guidelines for the care and protection of
laboratory animals. J Med Philos. 18:375–388. 1993. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang QG, Wang R, Khan M, Mahesh V and
Brann DW: Role of Dickkopf-1, an antagonist of the Wnt/beta-catenin
signaling pathway, in estrogen-induced neuroprotection and
attenuation of tau phosphorylation. J Neurosci. 28:8430–8441. 2008.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang QG, Raz L, Wang R, Han D, De Sevilla
L, Yang F, Vadlamudi RK and Brann DW: Estrogen attenuates ischemic
oxidative damage via an estrogen receptor alpha-mediated inhibition
of NADPH oxidase activation. J Neurosci. 29:13823–13836. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang R, Tu J, Zhang Q, Zhang X, Zhu Y, Ma
W, Cheng C, Brann DW and Yang F: Genistein attenuates ischemic
oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1
signaling. Hippocampus. 23:634–647. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shen Y, He P, Fan YY, Zhang JX, Yan HJ, Hu
WW, Ohtsu H and Chen Z: Carnosine protects against permanent
cerebral ischemia in histidine decarboxylase knockout mice by
reducing glutamate excitotoxicity. Free Radic Biol Med. 48:727–735.
2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang R, Zhang X, Zhang J, Fan Y, Shen Y,
Hu W and Chen Z: Oxygen-glucose deprivation induced glial scar-like
change in astrocytes. PLoS One. 7:e375742012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Lebesgue D, Chevaleyre V, Zukin RS and
Etgen AM: Estradiol rescues neurons from global ischemia-induced
cell death: Multiple cellular pathways of neuroprotection.
Steroids. 74:555–561. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Scott E, Zhang QG, Wang R, Vadlamudi R and
Brann D: Estrogen neuroprotection and the critical period
hypothesis. Front Neuroendocrinol. 33:85–104. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yao J, Hamilton RT, Cadenas E and Brinton
RD: Decline in mitochondrial bioenergetics and shift to ketogenic
profile in brain during reproductive senescence. Biochim. Biophys.
Acta. 1800:1121–1126. 2010.
|
31
|
Bohacek J, Bearl AM and Daniel JM:
Long-term ovarian hormone deprivation alters the ability of
subsequent oestradiol replacement to regulate choline
acetyltransferase protein levels in the hippocampus and prefrontal
cortex of middle-aged rats. J Neuroendocrinol. 20:1023–1027. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Gibbs RB, Nelson D and Hammond R: Role of
GPR30 in mediating estradiol effects on acetylcholine release in
the hippocampus. Horm Behav. 66:339–345. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu SB, Zhang N, Guo YY, Zhao R, Shi TY,
Feng SF, Wang SQ, Yang Q, Li XQ, Wu YM, et al: G-protein-coupled
receptor 30 mediates rapid neuroprotective effects of estrogen via
depression of NR2B-containing NMDA receptors. J Neurosci.
32:4887–4900. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bologa CG, Revankar CM, Young SM, Edwards
BS, Arterburn JB, Kiselyov AS, Parker MA, Tkachenko SE, Savchuck
NP, Sklar LA, et al: Virtual and biomolecular screening converge on
a selective agonist for GPR30. Nat Chem Biol. 2:207–212. 2006.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Notas G, Kampa M, Pelekanou V and Castanas
E: Interplay of estrogen receptors and GPR30 for the regulation of
early membrane initiated transcriptional effects: A pharmacological
approach. Steroids. 77:943–950. 2012. View Article : Google Scholar : PubMed/NCBI
|