1
|
Cooper D: Hyperthyroidism. Lancet.
362:459–468. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Boelaert K and Franklyn JA: Thyroid
hormone in health and disease. J Endocrinol. 187:1–15. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Oppenheimer JH, Schwartz HL, Lane JT and
Thompson MP: Functional relationship of thyroid hormone-induced
lipogenesis, lipolysis and thermogenesis in rat. J Clin Invest.
87:125–132. 1991. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kong YW, Cannell IG, de Moor CH, Hill K,
Garside PG, Hamilton TL, Meijer HA, Dobbyn HC, Stoneley M, Spriggs
KA, et al: The mechanism of micro-rna-mediated translation
repression is determined by the promoter of the target gene. Proc
Nail Acad Sci USA. 105:pp. 8866–8871. 2008; View Article : Google Scholar
|
5
|
Chen XM: MicroRNA signatures in liver
diseases. World J Gastroentero. 15:1665–1672. 2009. View Article : Google Scholar
|
6
|
Lynn FC: Meta-regulation: microRNA
regulation of glucose and lipid metabolism. Trends Endocrinol
Metab. 20:452–459. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dong H, Paquette M, Williams A, Zoeller
RT, Wade M and Yauk C: Thyroid hormone may regulate mRNA abundance
in liver by acting on micrornas. PLoS One. 5:e121362010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Visser WE, Heemstra KA, Swagemakers SM,
Ozgür Z, Corssmit EP, Burggraaf J, VanIjcken WF, vanderSpek PJ,
Smit JW and Visser TJ: Physiological thyroid hormone levels
regulate numerous skeletal muscle transcripts. J Clin Endocr Metab.
94:3487–3496. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Moore KJ, Rayner KJ, Suárez Y and
Fernández-Hernando C: The role of microRNAs in cholesterol efflux
and hepatic lipid metabolism. Annu Rev Nutr. 31:49–63. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
López-Terrada D, Cheung SW, Finegold MJ
and Knowles BB: Hep g2 is a hepatoblastoma-derived cell line. Hum
Pathol. 40:1512–1515. 2009. View Article : Google Scholar
|
11
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Brent GA: Mechanisms of thyroid hormone
action. J Clin Invest. 122:3035–3043. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Iwen KA, Schröder E and Brabant G: Thyroid
hormones and the metabolic syndrome. Eur Thyroid J. 2:83–92. 2013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Webb P: Thyroid hormone receptor and lipid
regulation. Curr Opin Invest Drugs. 11:1135–1142. 2010.
|
15
|
Shoemaker TJ, Kono T, Mariash CN and
Evansmolina C: Thyroid hormone analogues for the treatment of
metabolic disorders: New potential for unmet clinical needs? Endocr
Pract. 18:954–964. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cheng SY, Leonard JL and Davis PJ:
Molecular aspects of thyroid hormone actions. Endocr Rev.
31:139–170. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cordeiro A, deSouza LL, Oliveira LS,
Faustino LC, Santiago LA, Bloise FF, Ortiga-Carvalho TM, Almeida NA
and Pazos-Moura CC: Thyroid hormone regulation of Sirtuin 1
expression and implications to integrated responses in fasted mice.
J Endocrinol. 216:181–193. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sinha RA, You SH, Zhou J, Siddique MM, Bay
BH, Zhu X, Privalsky ML, Cheng SY, Stevens RD, Summers SA, et al:
Thyroid hormone stimulates hepatic lipid catabolism via activation
of autophagy. J Clin Invest. 122:2428–2438. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yap CS, Sinha RA, Ota S, Katsuki M and Yen
PM: Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA
expression via induction of miRNA-181d in hepatic cells. Biochen
Bioph Res Commun. 440:635–639. 2013. View Article : Google Scholar
|
20
|
Ståhlberg N, Merino R, Hernández LH,
Fernández-Pérez L, Sandelin A, Engström P, Tollet-Egnell P, Lenhard
B and Flores-Morales A: Exploring hepatic hormone actions using a
compilation of gene expression profiles. BMC Physiol. 5:82005.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Dong H, Yauk CL, Williams A, Lee A,
Douglas GR and Wade MG: Hepatic gene expression changes in
hypothyroid juvenile mice: Characterization of a novel negative
thyroid-responsive element. Endocrinology. 148:3932–3940. 2007.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Shibata A, Kawakami Y, Kimura T, Miyazawa
T and Nakagawa K: α-tocopherol attenuates the triglyceride- and
cholesterol-lowering effects of rice bran tocotrienol in rats fed a
western diet. J Agr Food Chem. 64:5361–5366. 2016. View Article : Google Scholar
|
23
|
Goldberg IJ, Huang LS, Huggins LA, Yu S,
Nagareddy PR, Scanlan TS and Ehrenkranz JR: Thyroid hormone reduces
cholesterol via a non-LDL receptor-mediated pathway. Endocrinology.
153:5143–5149. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Vickers KC, Sethupathy P, Baran-Gale J and
Remaley AT: Complexity of microRNA function and the role of isomiRs
in lipid homeostasis. J Lipid Res. 54:1182–1191. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Vickers KC, Shoucri BM, Levin MG, Wu H,
Pearson DS, Osei-Hwedieh D, Collins FS, Remaley AT and Sethupathy
P: MicroRNA-27b is a regulatory hub in lipid metabolism and is
altered in dyslipidemia. Hepatology. 57:533–542. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhong D, Huang G, Zhang Y, Zeng Y, Xu Z,
Zhao Y, He X and He F: MicroRNA-1 and microRNA-206 suppress
LXRα-induced lipogenesis in hepatocytes. Cell Signal. 25:1429–1437.
2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Vinod M, Chennamsetty I, Colin S, Belloy
L, De Paoli F, Schaider H, Graier WF, Frank S, Kratky D, Staels B,
et al: MIR-206 controls LXRα expression and promotes LXR-mediated
cholesterol efflux in macrophages. Biochim Biophys Acta.
1841:827–835. 2014. View Article : Google Scholar : PubMed/NCBI
|