1
|
Heidari M, Mandato CA and Lehoux S:
Vascular smooth muscle cell phenotypic modulation and the
extracellular matrix. Artery Res. 9:14–18. 2015. View Article : Google Scholar
|
2
|
Lin X, He Y, Hou X, Zhang Z, Wang R and Wu
Q: Endothelial cells can regulate smooth muscle cells in
contractile phenotype through the miR-206/ARF6&NCX1/exosome
axis. PLoS One. 11:e01529592016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Afzal TA, Luong LA, Chen D, Zhang C, Yang
F, Chen Q, An W, Wilkes E, Yashiro K, Cutillas PR, et al: NCK
associated protein 1 modulated by miRNA-214 determines vascular
smooth muscle cell migration, proliferation, and neointima
hyperplasia. J Am Heart Assoc. 5(pii): e0046292016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ostriker A, Horita HN, Poczobutt J,
Weiser-Evans MC and Nemenoff RA: Vascular smooth muscle
cell-derived transforming growth factor-β promotes maturation of
activated, neointima lesion-like macrophages. Arterioscler Thromb
Vasc Biol. 34:877–886. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Owens GK, Kumar MS and Wamhoff BR:
Molecular regulation of vascular smooth muscle cell differentiation
in development and disease. Physiol Rev. 84:767–801. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Gimbrone MA Jr and García-Cardeña G:
Endothelial cell dysfunction and the pathobiology of
atherosclerosis. Circ Res. 118:620–636. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ding H, Li D, Zhang Y, Zhang T, Zhu H, Xu
T, Luo Y and Wang C: Luteolin inhibits smooth muscle cell migration
and proliferation by attenuating the production of Nox4, p-Akt and
VEGF in endothelial cells. Curr Pharm Biotechnol. 14:1009–1015.
2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xia Y, Bhattacharyya A, Roszell EE, Sandig
M and Mequanint K: The role of endothelial cell-bound Jagged1 in
Notch3-induced human coronary artery smooth muscle cell
differentiation. Biomaterials. 33:2462–2472. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhou J, Li YS, Nguyen P, Wang KC, Weiss A,
Kuo YC, Chiu JJ, Shyy JY and Chien S: Regulation of vascular smooth
muscle cell turnover by endothelial cell-secreted microRNA-126:
Role of shear stress. Circ Res. 113:40–51. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Y, Guo Y, Chen Y, Wang Y, You Y, Yang
Q, Weng X, Li Q, Zhu X, Zhou B, et al: Establishment of an
interleukin-1β-induced inflammation-activated endothelial
cell-smooth muscle cell-mononuclear cell co-culture model and
evaluation of the anti-inflammatory effects of tanshinone IIA on
atherosclerosis. Mol Med Rep. 12:1665–1676. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Satoh S, Yada R, Inoue H, Omura S, Ejima
E, Mori T, Takenaka K, Kawamura N, Numaguchi K, Mori E, et al:
Toll-like receptor-4 is upregulated in plaque debris of patients
with acute coronary syndrome more than Toll-like receptor-2. Heart
Vessels. 31:1–5. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Roshan MH, Tambo A and Pace NP: The role
of TLR2, TLR4, and TLR9 in the pathogenesis of atherosclerosis. Int
J Inflam. 2016:15328322016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lim S and Park S: Role of vascular smooth
muscle cell in the inflammation of atherosclerosis. BMB Rep.
47:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xing S, Zheng F, Zhang W, Wang D and Xing
Q: Relationship between toll-like receptor 4 levels in aorta and
severity of atherosclerosis. J Int Med Res. 42:958–965. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Kapelouzou A, Giaglis S, Peroulis M,
Katsimpoulas M, Moustardas P, Aravanis CV, Kostakis A, Karayannakos
PE and Cokkinos DV: Overexpression of toll-like receptors 2, 3, 4
and 8 is correlated to the vascular atherosclerotic process in the
hyperlipidemic rabbit model: The effect of statin treatment. J Vasc
Res. 54:156–169. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tang YL, Jiang JH, Wang S, Liu Z, Tang XQ,
Peng J, Yang YZ and Gu HF: TLR4/NF-κB signaling contributes to
chronic unpredictable mild stress-induced atherosclerosis in
ApoE-/- mice. PLoS One. 10:e01236852015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pahwa R, Nallasamy P and Jialal I:
Toll-like receptors 2 and 4 mediate hyperglycemia induced
macrovascular aortic endothelial cell inflammation and perturbation
of the endothelial glycocalyx. J Diabetes Complications.
30:563–572. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang XQ, Wan HQ, Wei XJ, Zhang Y and Qu P:
CLI-095 decreases atherosclerosis by modulating foam cell formation
in apolipoprotein E-deficient mice. Mol Med Rep. 14:49–56. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang X, Coriolan D, Murthy V, Schultz K,
Golenbock DT and Beasley D: Proinflammatory phenotype of vascular
smooth muscle cells: Role of efficient Toll-like receptor 4
signaling. Am J Physiol Heart Circ Physiol. 289:H1069–H1076. 2005.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiang D, Li D, Cao L, Wang L, Zhu S, Xu T,
Wang C and Pan D: Positive feedback regulation of proliferation in
vascular smooth muscle cells stimulated by lipopolysaccharide is
mediated through the TLR 4/Rac1/Akt pathway. PLoS One.
9:e923982014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li H, Xu H and Liu S: Toll-like receptors
4 induces expression of matrix metalloproteinase-9 in human aortic
smooth muscle cells. Mol Biol Rep. 38:1419–1423. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhou X, Yuan L, Zhao X, Hou C, Ma W, Yu H
and Xiao R: Genistein antagonizes inflammatory damage induced by
β-amyloid peptide in microglia through TLR4 and NF-κB. Nutrition.
30:90–95. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ma W, Ding B, Yu H, Yuan L, Xi Y and Xiao
R: Genistein alleviates β-amyloid-induced inflammatory damage
through regulating Toll-like receptor 4/nuclear factor κB. J Med
Food. 18:273–279. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu F, Cao JG, Li C, Tan JS and Fu XH:
Protective effects of 7-difluoromethyl-5,4′-dimethoxygenistein
against human aorta endothelial injury caused by lysophosphatidyl
choline. Mol Cell Biochem. 363:147–155. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu S, Li L, Zhang J, Huang H, Yang S, Ren
C, Fu X and Zhang Y: 7-difluoromethyl-5, 4′-dimethoxygenistein
reverses LPC-induced apoptosis of HUVE-12 cells through regulating
mitochondrial apoptosis pathway. Curr Signal Transd Ther. 9:50–58.
2014. View Article : Google Scholar
|
26
|
Zhang Y, Li L, You J, Cao J and Fu X:
Effect of 7-difluoromethyl-5, 4′-dimethoxygenistein on aorta
atherosclerosis in hyperlipidemia ApoE(−/−) mice induced by a
cholesterol-rich diet. Drug Des Devel Ther. 7:233–242. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Fu XH, Wang L, Zhao H, Xiang HL and Cao
JG: Synthesis of genistein derivatives and determination of their
protective effects against vascular endothelial cell damages caused
by hydrogen peroxide. Bioorg Med Chem Lett. 18:513–517. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen L, DeWispelaere A, Dastvan F, Osborne
WR, Blechner C, Windhorst S and Daum G: Smooth muscle-alpha actin
inhibits vascular smooth muscle cell proliferation and migration by
inhibiting Rac1 activity. PLoS One. 11:e01557262016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Cibor D, Domagala-Rodacka R, Rodacki T,
Jurczyszyn A, Mach T and Owczarek D: Endothelial dysfunction in
inflammatory bowel diseases: Pathogenesis, assessment and
implications. World J Gastroenterol. 22:1067–1077. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sevastou I, Kaffe E, Mouratis MA and
Aidinis V: Lysoglycerophospholipids in chronic inflammatory
disorders: The PLA(2)/LPC and ATX/LPA axes. Biochim Biophys Acta.
1831:42–60. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Voight BF, Peloso GM, Orho-Melander M,
Frikke-Schmidt R, Barbalic M, Jensen MK, Hindy G, Hólm H, Ding EL,
Johnson T, et al: Plasma HDL cholesterol and risk of myocardial
infarction: A mendelian randomisation study. Lancet. 380:572–580.
2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang X, Hu G, Gao X, Wang Y, Zhang W,
Harmon EY, Zhi X, Xu Z, Lennartz MR, Barroso M, et al: The
induction of yes-associated protein expression after arterial
injury is crucial for smooth muscle phenotypic modulation and
neointima formation. Arterioscler Thromb Vasc Biol. 32:2662–2669.
2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Luo H, Wang J, Qiao C, Ma N, Liu D and
Zhang W: Pycnogenol attenuates atherosclerosis by regulating lipid
metabolism through the TLR4-NF-κB pathway. Exp Mol Med.
47:e1912015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee GL, Wu JY, Tsai CS, Lin CY, Tsai YT,
Lin CS, Wang YF, Yet SF, Hsu YJ and Kuo CC: TLR4-activated
MAPK-IL-6 axis regulates vascular smooth muscle cell function. Int
J Mol Sci. 17(pii): E13942016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hosseini H, Li Y, Kanellakis P, Tay C, Cao
A, Liu E, Peter K, Tipping P, Toh BH, Bobik A and Kyaw T: Toll-like
receptor (TLR)4 and MyD88 are essential for atheroprotection by
peritoneal B1a B cells. J Am Heart Assoc. 5(pii): e0029472016.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Ding Y, Subramanian S, Montes VN,
Goodspeed L, Wang S, Han C, Teresa AS III, Kim J, O'Brien KD and
Chait A: Toll-like receptor 4 deficiency decreases atherosclerosis
but does not protect against inflammation in obese low-density
lipoprotein receptor deficient mice. Arterioscler Thromb Vasc Biol.
32:1596–1604. 2012. View Article : Google Scholar : PubMed/NCBI
|