1
|
Cheng YJ, Imperatore G, Geiss LS, Wang J,
Saydah SH, Cowie CC and Gregg EW: Secular changes in the
age-specific prevalence of diabetes among U.S. adults: 1988–2010.
Diabetes Care. 36:2690–2696. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kaplan SA, Te AE and Blaivas JG:
Urodynamic findings in patients with diabetic cystopathy. J Urol.
153:342–344. 1995. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sasaki K, Chancellor MB, Phelan MW,
Yokoyama T, Fraser MO, Seki S, Kubo K, Kumon H, Groat WC and
Yoshimura N: Diabetic cystopathy correlates with a long-term
decrease in nerve growth factor levels in the bladder and
lumbosacral dorsal root Ganglia. J Urol. 168:1259–1264. 2002.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hanna-Mitchell AT, Ruiz GW, Daneshgari F,
Liu G, Apodaca G and Birder LA: Impact of diabetes mellitus on
bladder uroepithelial cells. Am J Physiol Regul Integr Comp
Physiol. 304:R84–R93. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang D, Yuan X, Hu C, Zhang B, Gao H, Wang
D, Chi J, Jing Q, Wu S and Wu CL: Endoplasmic reticulum stress is
involved in apoptosis of detrusor muscle in streptozocin-induced
diabetic rats. Neurourol Urodyn. 36:65–72. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Changolkar AK, Hypolite JA, Disanto M,
Oates PJ, Wein AJ and Chacko S: Diabetes induced decrease in
detrusor smooth muscle force is associated with oxidative stress
and overactivity of aldose reductase. J Urol. 173:309–313. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Daneshgari F, Liu G and Imrey PB: Time
dependent changes in diabetic cystopathy in rats include
compensated and decompensated bladder function. J Urol.
176:380–386. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Prakriya M and Lewis RS: Store-operated
calcium channels. Physiol Rev. 95:1383–1436. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck
TJ, Ellisman MH, Stauderman KA and Cahalan MD: STIM1 is a
Ca2+ sensor that activates CRAC channels and migrates
from the Ca2+ store to the plasma membrane. Nature.
437:902–905. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Prakriya M, Feske S, Gwack Y, Srikanth S,
Rao A and Hogan PG: Orai1 is an essential pore subunit of the CRAC
channel. Nature. 443:230–233. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Spinelli AM, González-Cobos JC, Zhang X,
Motiani RK, Rowan S, Zhang W, Garrett J, Vincent PA, Matrougui K,
Singer HA and Trebak M: Airway smooth muscle STIM1 and Orai1 are
upregulated in asthmatic mice and mediate PDGF-activated SOCE, CRAC
currents, proliferation, and migration. Pflugers Arch. 464:481–492.
2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Seth M, Li T, Graham V, Burch J, Finch E,
Stiber JA and Rosenberg PB: Dynamic regulation of sarcoplasmic
reticulum Ca(2+) stores by stromal interaction molecule 1 and
sarcolipin during muscle differentiation. Dev Dyn. 241:639–647.
2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Matsumoto-Miyai K, Kagase A, Yamada E,
Yoshizumi M, Murakami M, Ohba T and Kawatani M: Store-operated
Ca2+ entry suppresses distention-induced ATP release
from the urothelium. Am J Physiol Renal Physiol. 300:F716–F720.
2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhao B, Zhong X, Bai X, Wang Q, Song B and
Li L: Changes in store-operated calcium channels in rat bladders
with detrusor overactivity. Urology. 84:491.e1–e6. 2014. View Article : Google Scholar
|
15
|
Bansal R, Agarwal MM, Modi M, Mandal AK
and Singh SK: Urodynamic profile of diabetic patients with lower
urinary tract symptoms: Association of diabetic cystopathy with
autonomic and peripheral neuropathy. Urology. 77:699–705. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
He P, Deng J, Zhong X, Zhou Z, Song B and
Li L: Identification of a hyperpolarization-activated cyclic
nucleotide-gated channel and its subtypes in the urinary bladder of
the rat. Urology. 79:1411.e7–e13. 2012. View Article : Google Scholar
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Weirich J, Dumont L and Fleckenstein-Grün
G: Contribution of capacitative and non-capacitative
Ca2+-entry to M3-receptor-mediated contraction of
porcine coronary smooth muscle. Cell Calcium. 38:457–467. 2005.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang RX, He RL, Jiao HX, Dai M, Mu YP, Hu
Y, Wu ZJ, Sham JS and Lin MJ: Ginsenoside Rb1 attenuates
agonist-induced contractile response via inhibition of
store-operated calcium entry in pulmonary arteries of normal and
pulmonary hypertensive rats. Cell Physiol Biochem. 35:1467–1481.
2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chaudhari S, Wu P, Wang Y, Ding Y, Yuan J,
Begg M and Ma R: High glucose and diabetes enhanced store-operated
Ca(2+) entry and increased expression of its signaling proteins in
mesangial cells. Am J Physiol Renal Physiol. 306:F1069–F1080. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Estrada IA, Donthamsetty R, Debski P, Zhou
MH, Zhang SL, Yuan JX, Han W and Makino A: STIM1 restores coronary
endothelial function in type 1 diabetic mice. Circ Res.
111:1166–1175. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Curtis TM, Major EH, Trimble ER and
Scholfield CN: Diabetes-induced activation of protein kinase C
inhibits store-operated Ca2+ uptake in rat retinal
microvascular smooth muscle. Diabetologia. 46:1252–1259. 2003.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Pang Y, Hunton DL, Bounelis P and Marchase
RB: Hyperglycemia inhibits capacitative calcium entry and
hypertrophy in neonatal cardiomyocytes. Diabetes. 51:3461–3467.
2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Peng G, Lu W, Li X, Chen Y, Zhong N, Ran P
and Wang J: Expression of store-operated Ca2+ entry and transient
receptor potential canonical and vanilloid-related proteins in rat
distal pulmonary venous smooth muscle. Am J Physiol Lung Cell Mol
Physiol. 299:L621–L630. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Peng G, Ran P, Lu W, Zhong N and Wang J:
Acute hypoxia activates store-operated Ca(2+) entry and increases
intracellular Ca(2+) concentration in rat distal pulmonary venous
smooth muscle cells. J Thorac Dis. 5:605–612. 2013.PubMed/NCBI
|
26
|
Liu H, Hughes JD, Rollins S, Chen B and
Perkins E: Calcium entry via ORAI1 regulates glioblastoma cell
proliferation and apoptosis. Exp Mol Pathol. 91:753–760. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Waring JV and Wendt IR: Effects of
streptozotocin-induced diabetes mellitus on intracellular calcium
and contraction of longitudinal smooth muscle from rat urinary
bladder. J Urol. 163:323–330. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mustafa S: Effect of diabetes on the ion
pumps of the bladder. Urology. 81:211.e17–e21. 2013. View Article : Google Scholar
|
29
|
Kirschner-Hermanns R, Daneshgari F, Vahabi
B, Birder L, Oelke M and Chacko S: Does diabetes mellitus-induced
bladder remodeling affect lower urinary tract function? ICI-RS
2011. Neurourol Urodyn. 31:359–364. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Leiria LO, Mónica FZ, Carvalho FD,
Claudino MA, Franco-Penteado CF, Schenka A, Grant AD, De Nucci G
and Antunes E: Functional, morphological and molecular
characterization of bladder dysfunction in streptozotocin-induced
diabetic mice: Evidence of a role for L-type voltage-operated
Ca2+ channels. Br J Pharmacol. 163:1276–1288. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Jiang X, Luttrell I, Chitaley K and Yang
CC: T- and L-type voltage-gated calcium channels: Their role in
diabetic bladder dysfunction. Neurourol Urodyn. 33:147–152. 2014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang Y, Deng X, Mancarella S, Hendron E,
Eguchi S, Soboloff J, Tang XD and Gill DL: The calcium store
sensor, STIM1, reciprocally controls Orai and CaV1.2 channels.
Science. 330:105–109. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Park CY, Shcheglovitov A and Dolmetsch R:
The CRAC channel activator STIM1 binds and inhibits L-type
voltage-gated calcium channels. Science. 330:101–105. 2010.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Nguyen N, Biet M, Simard E, Béliveau E,
Francoeur N, Guillemette G, Dumaine R, Grandbois M and Boulay G:
STIM1 participates in the contractile rhythmicity of HL-1 cells by
moderating T-type Ca(2+) channel activity. Biochim Biophys Acta.
1833:1294–1303. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ma T, Gong K, Yan Y, Song B, Zhang X and
Gong Y: Mitochondrial modulation of store-operated Ca(2+) entry in
model cells of Alzheimer's disease. Biochem Biophys Res Commun.
426:196–202. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Parekh AB and Putney JW Jr: Store-operated
calcium channels. Physiol Rev. 85:757–810. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hoth M and Niemeyer BA: The neglected CRAC
proteins: Orai2, Orai3, and STIM2. Curr Top Membr. 71:237–271.
2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Daskoulidou N, Zeng B, Berglund LM, Jiang
H, Chen GL, Kotova O, Bhandari S, Ayoola J, Griffin S, Atkin SL, et
al: High glucose enhances store-operated calcium entry by
upregulating ORAI/STIM via calcineurin-NFAT signalling. J Mol Med
(Berl). 93:511–521. 2015. View Article : Google Scholar : PubMed/NCBI
|