Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (Review)
- Authors:
- Chi Liu
- Xun Zhang
- Yang Xiang
- Xiangping Qu
- Huijun Liu
- Caixia Liu
- Meiling Tan
- Jianxin Jiang
- Xiaoqun Qin
-
Affiliations: Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China, State Key Laboratory of Trauma, Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China - Published online on: March 14, 2018 https://doi.org/10.3892/mmr.2018.8739
- Pages: 6935-6941
This article is mentioned in:
Abstract
Ishmael FT: The inflammatory response in the pathogenesis of asthma. J Am Osteopath Assoc. 111 11 Suppl 7:S11–S17. 2011.PubMed/NCBI | |
KleinJan A: Airway inflammation in asthma: Key players beyond the Th2 pathway. Curr Opin Pulm Med. 22:46–52. 2016. View Article : Google Scholar : PubMed/NCBI | |
Papi A, Brightling C, Pedersen SE and Reddel HK: Asthma. Lancet. 391:783–800. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Kang R, Xiao W, Wang H, Calderwood SK and Xiao X: The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol. 179:1236–1244. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hallstrand TS, Hackett TL, Altemeier WA, Matute-Bello G, Hansbro PM and Knight DA: Airway epithelial regulation of pulmonary immune homeostasis and inflammation. Clin Immunol. 151:1–15. 2014. View Article : Google Scholar : PubMed/NCBI | |
Holgate ST: The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev. 242:205–219. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mitchell PD and O'Byrne PM: Epithelial-derived cytokines in asthma. Chest. 151:1338–1344. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao W, Li L, Wang Y, Zhang S, Adcock IM, Barnes PJ, Huang M and Yao X: Bronchial epithelial cells: The key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology. 20:722–729. 2015. View Article : Google Scholar : PubMed/NCBI | |
Erle DJ and Sheppard D: The cell biology of asthma. J Cell Biol. 205:621–631. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mitchell PD and O'Byrne PM: Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma. Pharmacol Ther. 169:104–112. 2017. View Article : Google Scholar : PubMed/NCBI | |
Smit JJ and Lukacs NW: A closer look at chemokines and their role in asthmatic responses. Eur J Pharmacol. 533:277–288. 2006. View Article : Google Scholar : PubMed/NCBI | |
Castan L, Magnan A and Bouchaud G: Chemokine receptors in allergic diseases. Allergy. 72:682–690. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guerreiro R, Santos-Costa Q and Azevedo-Pereira JM: The chemokines and their receptors: Characteristics and physiological functions. Acta Medica Portuguesa. 24 Suppl 4:S967–S976. 2011. | |
Fall N, Bove KE, Stringer K, Lovell DJ, Brunner HI, Weiss J, Higgins GC, Bowyer SL, Graham TB, Thornton S and Grom AA: Association between lack of angiogenic response in muscle tissue and high expression of angiostatic ELR-negative CXC chemokines in patients with juvenile dermatomyositis: possible link to vasculopathy. Arthritis Rheum. 52:3175–3180. 2005. View Article : Google Scholar : PubMed/NCBI | |
Osei-Kumah A, Wark PA, Smith R and Clifton VL: Asthma during pregnancy alters immune cell profile and airway epithelial chemokine release. Inflamm Res. 59:349–358. 2010. View Article : Google Scholar : PubMed/NCBI | |
Iosifidis T, Garratt LW, Coombe DR, Knight DA, Stick SM and Kicic A: Airway epithelial repair in health and disease: Orchestrator or simply a player? Respirology. 21:438–448. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fuke S, Betsuyaku T, Nasuhara Y, Morikawa T, Katoh H and Nishimura M: Chemokines in bronchiolar epithelium in the development of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 31:405–412. 2004. View Article : Google Scholar : PubMed/NCBI | |
Post S, Rozeveld D, Jonker MR, Bischoff R, van Oosterhout AJ and Heijink IH: ADAM10 mediates the house dust mite-induced release of chemokine ligand CCL20 by airway epithelium. Allergy. 70:1545–1552. 2015. View Article : Google Scholar : PubMed/NCBI | |
Julkunen I, Melen K, Nyqvist M, Pirhonen J, Sareneva T and Matikainen S: Inflammatory responses in influenza A virus infection. Vaccine. 19 Suppl 1:S32–S37. 2000. View Article : Google Scholar : PubMed/NCBI | |
van de Veerdonk FL, Netea MG, Dinarello CA and Joosten LA: Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol. 32:110–116. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Bryan JL, DeLassus E, Chang LW, Liao W and Sandell LJ: CCAAT/enhancer-binding protein beta and NF-κB mediate high level expression of chemokine genes CCL3 and CCL4 by human chondrocytes in response to IL-1β. J Biol Chem. 285:33092–33103. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hu WT, Li MQ, Liu W, Jin LP, Li DJ and Zhu XY: IL-33 enhances proliferation and invasiveness of decidual stromal cells by up-regulation of CCL2/CCR2 via NF-κB and ERK1/2 signaling. Mol Hum Reprod. 20:358–372. 2014. View Article : Google Scholar : PubMed/NCBI | |
Faffe DS, Whitehead T, Moore PE, Baraldo S, Flynt L, Bourgeois K, Panettieri RA and Shore SA: IL-13 and IL-4 promote TARC release in human airway smooth muscle cells: Role of IL-4 receptor genotype. Am J Physiol Lung Cell Mol Physiol. 285:L907–L914. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hijnen D, De Bruin-Weller M, Oosting B, Lebre C, De Jong E, Bruijnzeel-Koomen C and Knol E: Serum thymus and activation-regulated chemokine (TARC) and cutaneous T cell-attracting chemokine (CTACK) levels in allergic diseases: TARC and CTACK are disease-specific markers for atopic dermatitis. J Allergy Clin Immunol. 113:334–340. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Hu H, Balzar S, Trudeau JB and Wenzel SE: MAPK regulation of IL-4/IL-13 receptors contributes to the synergistic increase in CCL11/eotaxin-1 in response to TGF-β1 and IL-13 in human airway fibroblasts. J Immunol. 188:6046–6054. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hong GH, Kwon HS, Moon KA, Park SY, Park S, Lee KY, Ha EH, Kim TB, Moon HB, Lee HK and Cho YS: Clusterin modulates allergic airway inflammation by attenuating CCL20-mediated dendritic cell recruitment. J Immunol. 196:2021–2030. 2016. View Article : Google Scholar : PubMed/NCBI | |
He M, Song G, Yu Y, Jin Q and Bian Z: LPS-miR-34a-CCL22 axis contributes to regulatory T cell recruitment in periapical lesions. Biochem Biophys Res Commun. 460:733–740. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kimura S, Tanimoto A, Wang KY, Shimajiri S, Guo X, Tasaki T, Yamada S and Sasaguri Y: Expression of macrophage-derived chemokine (CCL22) in atherosclerosis and regulation by histamine via the H2 receptor. Pathol Int. 62:675–683. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abrial C, Grassin-Delyle S, Salvator H, Brollo M, Naline E and Devillier P: 15-Lipoxygenases regulate the production of chemokines in human lung macrophages. Br J Pharmacol. 172:4319–4330. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schneider D, Hong JY, Bowman ER, Chung Y, Nagarkar DR, McHenry CL, Goldsmith AM, Bentley JK, Lewis TC and Hershenson MB: Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease. Am J Physiol Lung Cell Mol Physiol. 304:L162–L169. 2013. View Article : Google Scholar : PubMed/NCBI | |
Renois F, Jacques J, Talmud D, Deslée G, Lévêque N and Andréoletti L: Respiratory echovirus 30 and coxsackievirus B5 can induce production of RANTES, MCP-1 and IL-8 by human bronchial epithelial cells. Virus Res. 152:41–49. 2010. View Article : Google Scholar : PubMed/NCBI | |
Heijink IH, Marcel Kies P, van Oosterhout AJ, Postma DS, Kauffman HF and Vellenga E: Der p, IL-4 and TGF-beta cooperatively induce EGFR-dependent TARC expression in airway epithelium. Am J Respir Cell Mol Biol. 36:351–359. 2007. View Article : Google Scholar : PubMed/NCBI | |
Herjan T, Yao P, Qian W, Li X, Liu C, Bulek K, Sun D, Yang WP, Zhu J, He A, et al: HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J Immunol. 191:640–649. 2013. View Article : Google Scholar : PubMed/NCBI | |
Katanov C, Lerrer S, Liubomirski Y, Leider-Trejo L, Meshel T, Bar J, Feniger-Barish R, Kamer I, Soria-Artzi G, Kahani H, et al: Regulation of the inflammatory profile of stromal cells in human breast cancer: Prominent roles for TNF-α and the NF-κB pathway. Stem Cell Res Therapy. 6:872015. View Article : Google Scholar | |
Song Y, Lin Q, Zheng J, Zhu X and Yang S: PPAR-γ agonist inhibits the expressions of chemokines induced by IFN-γ and TNF-α in renal tubular epithelial cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 30:673–676. 2014.(In Chinese). PubMed/NCBI | |
Fenwick PS, Macedo P, Kilty IC, Barnes PJ and Donnelly LE: Effect of JAK Inhibitors on Release of CXCL9, CXCL10 and CXCL11 from human airway epithelial cells. PLoS One. 10:e01287572015. View Article : Google Scholar : PubMed/NCBI | |
Chien JW, Chu YT, Yang SN, Kuo CH, Wang WL, Kuo PL, Jong YJ and Hung CH: Long-acting beta 2 agonists suppress IP-10 expression in human bronchial epithelial cells. J Investig Med. 60:1048–1053. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takahashi N, Sugaya M, Suga H, Oka T, Kawaguchi M, Miyagaki T, Fujita H and Sato S: Thymic stromal chemokine TSLP acts through Th2 cytokine production to induce cutaneous T-cell lymphoma. Cancer Res. 76:6241–6252. 2016. View Article : Google Scholar : PubMed/NCBI | |
Prefontaine D, Nadigel J, Chouiali F, Audusseau S, Semlali A, Chakir J, Martin JG and Hamid Q: Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol. 125:752–754. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sei H, Oshima T, Shan J, Wu L, Yamasaki T, Okugawa T, Kondo T, Tomita T, Fukui H, Watari J and Miwa H: Esophageal epithelial-derived IL-33 Is upregulated in patients with heartburn. PLoS One. 11:e01542342016. View Article : Google Scholar : PubMed/NCBI | |
Park IH, Park JH, Shin JM and Lee HM: Tumor necrosis factor-α regulates interleukin-33 expression through extracellular signal-regulated kinase, p38 and nuclear factor-κB pathways in airway epithelial cells. Int Forum Allergy Rhinol. 6:973–980. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nygaard U, Hvid M, Johansen C, Buchner M, Fölster-Holst R, Deleuran M and Vestergaard C: TSLP, IL-31, IL-33 and sST2 are new biomarkers in endophenotypic profiling of adult and childhood atopic dermatitis. J Eur Acad Dermatol Venereol. 30:1930–1938. 2016.PubMed/NCBI | |
Golebski K, van Tongeren J, van Egmond D, de Groot EJ, Fokkens WJ and van Drunen CM: Specific Induction of TSLP by the Viral RNA Analogue Poly (I:C) in primary epithelial cells derived from nasal polyps. PLoS One. 11:e01528082016. View Article : Google Scholar : PubMed/NCBI | |
Amin K: The Role of the T lymphocytes and remodeling in asthma. Inflammation. 39:1475–1482. 2016. View Article : Google Scholar : PubMed/NCBI | |
Froidure A, Vandenplas O, D'Alpaos V, Evrard G and Pilette C: Persistence of asthma following allergen avoidance is associated with proTh2 myeloid dendritic cell activation. Thorax. 70:967–973. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin CL, Hsiao G, Wang CC and Lee YL: Corrigendum to ‘Imperatorin exerts antiallergic effects in Th2-mediated allergic asthma via induction of IL-10-producing regulatory T cells by modulating the function of dendritic cells’ [Pharmacol. Res. (2016) 111–121]. Pharmacological Res. 124:1572017. View Article : Google Scholar | |
Purandare AV, Wan H, Somerville JE, Burke C, Vaccaro W, Yang X, McIntyre KW and Poss MA: Core exploration in optimization of chemokine receptor CCR4 antagonists. Bioorg Med Chem Lett. 17:679–682. 2007. View Article : Google Scholar : PubMed/NCBI | |
Penaloza-MacMaster P, Kamphorst AO, Wieland A, Araki K, Iyer SS, West EE, O'Mara L, Yang S, Konieczny BT, Sharpe AH, et al: Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 211:1905–1918. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liao J, Liang G, Xie S, Zhao H, Zuo X, Li F, Chen J, Zhao M, Chan TM and Lu Q: CD40L demethylation in CD4(+) T cells from women with rheumatoid arthritis. Clin Immunol. 145:13–18. 2012. View Article : Google Scholar : PubMed/NCBI | |
Alasandagutti ML, Ansari MS, Sagurthi SR, Valluri V and Gaddam S: Role of IL-13 genetic variants in signalling of asthma. Inflammation. 40:566–577. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen YL and Chiang BL: Targeting TSLP With shRNA alleviates airway inflammation and decreases epithelial CCL17 in a murine model of asthma. Mol Ther Nucleic Acids. 5:e3162016. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Dong F, Wang RA, Wang J, Zhao J, Yang M, Gong W, Cui R and Dong L: Central role of cellular senescence in TSLP-induced airway remodeling in asthma. PLoS One. 8:e777952013. View Article : Google Scholar : PubMed/NCBI | |
Walsh CJ, Zaihra T, Benedetti A, Fugère C, Olivenstein R, Lemière C, Hamid Q and Martin JG: Exacerbation risk in severe asthma is stratified by inflammatory phenotype using longitudinal measures of sputum eosinophils. Clin Exp Allergy. 46:1291–1302. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rose CE Jr, Lannigan JA, Kim P, Lee JJ, Fu SM and Sung SS: Murine lung eosinophil activation and chemokine production in allergic airway inflammation. Cell Mol Immunol. 7:361–374. 2010. View Article : Google Scholar : PubMed/NCBI | |
Asosingh K, Vasanji A, Tipton A, Queisser K, Wanner N, Janocha A, Grandon D, Anand-Apte B, Rothenberg ME, Dweik R and Erzurum SC: Eotaxin-rich proangiogenic hematopoietic progenitor cells and CCR3+ endothelium in the atopic asthmatic response. J Immunol. 196:2377–2387. 2016. View Article : Google Scholar : PubMed/NCBI | |
George L and Brightling CE: Eosinophilic airway inflammation: Role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis. 7:34–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi I, Kikuchi S, Kobayashi T, Hagiwara K, Sakamoto Y, Kanazawa M and Nagata M: Eosinophil trans-basement membrane migration induced by interleukin-8 and neutrophils. Am J Respir Cell Mol Biol. 34:760–765. 2006. View Article : Google Scholar : PubMed/NCBI | |
Takaku Y, Nakagome K, Kobayashi T, Hagiwara K, Kanazawa M and Nagata M: IFN-γ-inducible protein of 10 kDa upregulates the effector functions of eosinophils through beta2 integrin and CXCR3. Respir Res. 12:1382011. View Article : Google Scholar : PubMed/NCBI | |
Henkels KM, Frondorf K, Gonzalez-Mejia ME, Doseff AL and Gomez-Cambronero J: IL-8-induced neutrophil chemotaxis is mediated by Janus kinase 3 (JAK3). FEBS Lett. 585:159–166. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sawant KV, Xu R, Cox R, Hawkins H, Sbrana E, Kolli D, Garofalo RP and Rajarathnam K: Chemokine CXCL1-mediated neutrophil trafficking in the lung: Role of CXCR2 activation. J Innate Immu. 7:647–658. 2015. View Article : Google Scholar | |
Disteldorf EM, Krebs CF, Paust HJ, Turner JE, Nouailles G, Tittel A, Meyer-Schwesinger C, Stege G, Brix S, Velden J, et al: CXCL5 drives neutrophil recruitment in TH17-mediated GN. J Am Soc Nephrol. 26:55–66. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mosca T, Menezes MC, Silva AV, Stirbulov R and Forte WC: Chemotactic and phagocytic activity of blood neutrophils in allergic asthma. Immunol Invest. 44:509–520. 2015. View Article : Google Scholar : PubMed/NCBI | |
Drake LY, Iijima K and Kita H: Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy. 69:1300–1307. 2014. View Article : Google Scholar : PubMed/NCBI | |
Halim TY, Steer CA, Matha L, Gold MJ, Martinez-Gonzalez I, McNagny KM, McKenzie AN and Takei F: Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity. 40:425–435. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu J: T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine. 75:14–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Molofsky AB, Van Gool F, Liang HE, Van Dyken SJ, Nussbaum JC, Lee J, Bluestone JA and Locksley RM: Interleukin-33 and interferon-gamma counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity. 43:161–174. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Vodovotz Y, Fan L, Li Y, Liu Z, Namas R, Barclay D, Zamora R, Billiar TR, Wilson MA, et al: Injury-induced MRP8/MRP14 stimulates IP-10/CXCL10 in monocytes/macrophages. FASEB J. 29:250–262. 2015. View Article : Google Scholar : PubMed/NCBI | |
Carta S, Tassi S, Delfino L, Omenetti A, Raffa S, Torrisi MR, Martini A, Gattorno M and Rubartelli A: Deficient production of IL-1 receptor antagonist and IL-6 coupled to oxidative stress in cryopyrin-associated periodic syndrome monocytes. Ann Rheum Dis. 71:1577–1581. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mellado M, Martin de Ana A, Gomez L, Martinez C and Rodriguez-Frade JM: Chemokine receptor 2 blockade prevents asthma in a cynomolgus monkey model. J Pharmacol Exp Ther. 324:769–775. 2008. View Article : Google Scholar : PubMed/NCBI |