1
|
Williams PT: Lower prevalence of
hypertension, hypercholesterolemia, and diabetes in marathoners.
Med Sci Sports Exerc. 41:523–529. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Schneider S, Askew CD, Diehl J, Mierau A,
Kleinert J, Abel T, Carnahan H and Strüder HK: EEG activity and
mood in health orientated runners after different exercise
intensities. Physiol Behav. 96:709–716. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Iwamoto J, Takeda T and Sato Y: Effect of
treadmill exercise on bone mass in female rats. Exp Anim. 54:1–6.
2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bourrin S, Genty C, Palle S, Gharib C and
Alexandre C: Adverse effects of strenuous exercise: a densitometric
and histomorphometric study in the rat. J Appl Physiol (1985).
76:1999–2005. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hind K, Truscott JG and Evans JA: Low
lumbar spine bone mineral density in both male and female endurance
runners. Bone. 39:880–885. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lappe J, Cullen D, Haynatzki G, Recker R,
Ahlf R and Thompson K: Calcium and vitamin d supplementation
decreases incidence of stress fractures in female navy recruits. J
Bone Miner Res. 23:741–749. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Frost HM: Bone's mechanostat: A 2003
update. Anat Rec A Discov Mol Cell Evol Biol. 275:1081–1101. 2003.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ozcivici E, Luu YK, Adler B, Qin YX, Rubin
J, Judex S and Rubin CT: Mechanical signals as anabolic agents in
bone. Nat Rev Rheumatol. 6:50–59. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rubin CT and Lanyon LE: Regulation of bone
mass by mechanical strain magnitude. Calcif Tissue Int. 37:411–417.
1985. View Article : Google Scholar : PubMed/NCBI
|
10
|
Scott A, Khan KM, Duronio V and Hart DA:
Mechanotransduction in human bone: In vitro cellular physiology
that underpins bone changes with exercise. Sports Med. 38:139–160.
2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Klein-Nulend J, Bacabac RG and Bakker AD:
Mechanical loading and how it affects bone cells: The role of the
osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater.
24:278–291. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Georgiou KR, Scherer MA, Fan CM, Cool JC,
King TJ, Foster BK and Xian CJ: Methotrexate chemotherapy reduces
osteogenesis but increases adipogenic potential in the bone marrow.
J Cell Physiol. 227:909–918. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bianco P and Robey Gehron P: Marrow
stromal stem cells. J Clin Invest. 105:1663–1668. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kajkenova O, Lecka-Czernik B, Gubrij I,
Hauser SP, Takahashi K, Parfitt AM, Jilka RL, Manolagas SC and
Lipschitz DA: Increased adipogenesis and myelopoiesis in the bone
marrow of SAMP6, a murine model of defective osteoblastogenesis and
low turnover osteopenia. J Bone Miner Res. 12:1772–1779. 1997.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Nuttall ME and Gimble JM: Is there a
therapeutic opportunity to either prevent or treat osteopenic
disorders by inhibiting marrow adipogenesis? Bone. 27:177–184.
2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nuttall ME and Gimble JM: Controlling the
balance between osteoblastogenesis and adipogenesis and the
consequent therapeutic implications. Curr Opin Pharmacol.
4:290–294. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tsai MY, Shyr CR, Kang HY, Chang YC, Weng
PL, Wang SY, Huang KE and Chang C: The reduced trabecular bone mass
of adult ARKO male mice results from the decreased osteogenic
differentiation of bone marrow stroma cells. Biochem Biophys Res
Commun. 411:477–482. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mauney JR, Sjostorm S, Blumberg J, Horan
R, O'Leary JP, Vunjak-Novakovic G, Volloch V and Kaplan DL:
Mechanical stimulation promotes osteogenic differentiation of human
bone marrow stromal cells on 3-D partially demineralized bone
scaffolds in vitro. Calcif Tissue Int. 74:458–468. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sakata T, Sakai A, Tsurukami H, Okimoto N,
Okazaki Y, Ikeda S, Norimura T and Nakamura T: Trabecular bone
turnover and bone marrow cell development in tail-suspended mice. J
Bone Miner Res. 14:1596–1604. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ahdjoudj S, Kaabeche K, Holy X, Fromigué
O, Modrowski D, Zérath E and Marie PJ: Transforming growth
factor-beta inhibits CCAAT/enhancer-binding protein expression and
PPARgamma activity in unloaded bone marrow stromal cells. Exp Cell
Res. 303:138–147. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
David V, Martin A, Lafage-Proust MH,
Malaval L, Peyroche S, Jones DB, Vico L and Guignandon A:
Mechanical loading down-regulates peroxisome proliferator-activated
receptor gamma in bone marrow stromal cells and favors
osteoblastogenesis at the expense of adipogenesis. Endocrinology.
148:2553–2562. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mori T, Okimoto N, Sakai A, Okazaki Y,
Nakura N, Notomi T and Nakamura T: Climbing exercise increases bone
mass and trabecular bone turnover through transient regulation of
marrow osteogenic and osteoclastogenic potentials in mice. J Bone
Miner Res. 18:2002–2009. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yokota H, Leong DJ and Sun HB: Mechanical
loading: Bone remodeling and cartilage maintenance. Curr Osteoporos
Rep. 9:237–242. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ni GX, Liu SY, Lei L, Li Z, Zhou YZ and
Zhan LQ: Intensity-dependent effect of treadmill running on knee
articular cartilage in a rat model. Biomed Res Int.
2013:1723922013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bu S, Chen Y, Wang S, Zhang F and Ji G:
Treadmill training regulates β-catenin signaling through
phosphorylation of GSK-3β in lumbar vertebrae of ovariectomized
rats. Eur J Appl Physiol. 112:3295–3304. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Su N, Sun Q, Li C, Lu X, Qi H, Chen S,
Yang J, Du X, Zhao L, He Q, et al: Gain-of-function mutation in
FGFR3 in mice leads to decreased bone mass by affecting both
osteoblastogenesis and osteoclastogenesis. Hum Mol Genet.
19:1199–1210. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta DeltaC(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen Y, Wang S, Bu S, Wang Y, Duan Y and
Yang S: Treadmill training prevents bone loss by inhibition of
PPARγ expression but not promoting of Runx2 expression in
ovariectomized rats. Eur J Appl Physiol. 111:1759–1767. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kiuchi A, Shimegi S, Tanaka I, Izumo N,
Fukuyama R, Nakamuta H and Koida M: Dose-response effects of
exercise intensity on bone in ovariectomized rats. Int J Sports
Health Sci. 4:10–18. 2006. View Article : Google Scholar
|
30
|
Huang TH, Lin SC, Chang FL, Hsieh SS, Liu
SH and Yang RS: Effects of different exercise modes on
mineralization, structure, and biomechanical properties of growing
bone. J Appl Physiol (1985). 95:300–307. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sööt T, Jürimäe T, Jürimäe J, Gapeyeva H
and Pääsuke M: Relationship between leg bone mineral values and
muscle strength in women with different physical activity. J Bone
Miner Metab. 23:401–406. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Turner CH, Forwood MR, Rho JY and
Yoshikawa T: Mechanical loading thresholds for lamellar and woven
bone formation. J Bone Miner Res. 9:87–97. 1994. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chow JW, Jagger CJ and Chambers TJ:
Characterization of osteogenic response to mechanical stimulation
in cancellous bone of rat caudal vertebrae. Am J Physiol.
265:E340–E347. 1993.PubMed/NCBI
|
34
|
Bacabac RG, Van Loon JJ, Smit TH and
Klein-Nulend J: Noise enhances the rapid nitric oxide production by
bone cells in response to fluid shear stress. Technol Health Care.
17:57–65. 2009.PubMed/NCBI
|
35
|
Li YJ, Batra NN, You L, Meier SC, Coe IA,
Yellowley CE and Jacobs CR: Oscillatory fluid flow affects human
marrow stromal cell proliferation and differentiation. J Orthop
Res. 22:1283–1289. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jagodzinski M, Drescher M, Zeichen J,
Hankemeier S, Krettek C, Bosch U and van Griensven M: Effects of
cyclic longitudinal mechanical strain and dexamethasone on
osteogenic differentiation of human bone marrow stromal cells. Eur
Cell Mater. 7:35–41. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Verborgt O, Gibson GJ and Schaffler MB:
Loss of osteocyte integrity in association with microdamage and
bone remodeling after fatigue in vivo. J Bone Miner Res. 15:60–67.
2000. View Article : Google Scholar : PubMed/NCBI
|
38
|
Stanford CM, Welsch F, Kastner N, Thomas
G, Zaharias R, Holtman K and Brand RA: Primary human bone cultures
from older patients do not respond at continuum levels of in vivo
strain magnitudes. J Biomech. 33:63–71. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Basso N, Jia Y, Bellows CG and Heersche
JN: The effect of reloading on bone volume, osteoblast number, and
osteoprogenitor characteristics: Studies in hind limb unloaded
rats. Bone. 37:370–378. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cao Y, Zhou Z, de Crombrugghe B, Nakashima
K, Guan H, Duan X, Jia SF and Kleinerman ES: Osterix, a
transcription factor for osteoblast differentiation, mediates
antitumor activity in murine osteosarcoma. Cancer Res.
65:1124–1128. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jikko A, Harris SE, Chen D, Mendrick DL
and Damsky CH: Collagen integrin receptors regulate early
osteoblast differentiation induced by BMP-2. J Bone Miner Res.
14:1075–1083. 1999. View Article : Google Scholar : PubMed/NCBI
|
42
|
Pockwinse SM, Wilming LG, Conlon DM, Stein
GS and Lian JB: Expression of cell growth and bone specific genes
at single cell resolution during development of bone tissue-like
organization in primary osteoblast cultures. J Cell Biochem.
49:310–323. 1992. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shockley KR, Lazarenko OP, Czernik PJ,
Rosen CJ, Churchill GA and Lecka-Czernik B: PPARgamma2 nuclear
receptor controls multiple regulatory pathways of osteoblast
differentiation from marrow mesenchymal stem cells. J Cell Biochem.
106:232–246. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bruedigam C, Koedam M, Chiba H, Eijken M
and van Leeuwen JP: Evidence for multiple peroxisome
proliferator-activated receptor gamma transcripts in bone:
Fine-tuning by hormonal regulation and mRNA stability. FEBS Lett.
582:1618–1624. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Armstrong VJ, Muzylak M, Sunters A, Zaman
G, Saxon LK, Price JS and Lanyon LE: Wnt/beta-catenin signaling is
a component of osteoblastic bone cell early responses to
load-bearing and requires estrogen receptor alpha. J Biol Chem.
282:20715–20727. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bonewald LF and Johnson ML: Osteocytes,
mechanosensing and Wnt signaling. Bone. 42:606–615. 2008.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Robinson JA, Chatterjee-Kishore M,
Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P,
Brown EL, et al: Wnt/beta-catenin signaling is a normal
physiological response to mechanical loading in bone. J Biol Chem.
281:31720–31728. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Takada I, Kouzmenko AP and Kato S: Wnt and
PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev
Rheumatol. 5:442–447. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Sen B, Xie Z, Case N, Ma M, Rubin C and
Rubin J: Mechanical strain inhibits adipogenesis in mesenchymal
stem cells by stimulating a durable beta-catenin signal.
Endocrinology. 149:6065–6075. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Case N, Ma M, Sen B, Xie Z, Gross TS and
Rubin J: Beta-catenin levels influence rapid mechanical responses
in osteoblasts. J Biol Chem. 283:29196–29205. 2008. View Article : Google Scholar : PubMed/NCBI
|