1
|
DeFronzo RA: Pathogenesis of type 2
(non-insulin dependent) diabetes mellitus: a balanced overview.
Diabetologia. 35:389–397. 1992. View Article : Google Scholar : PubMed/NCBI
|
2
|
Global status report on noncommunicable
diseases 2014. World Health Organization: 298. 2014.
|
3
|
King GL: The role of inflammatory
cytokines in diabetes and its complications. J Periodontol. 79 8
Suppl:S1527–S1534. 2008. View Article : Google Scholar
|
4
|
Lloyd A, Sawyer W and Hopkinson P: Impact
of long-term complications on quality of life in patients with type
2 diabetes not using insulin. Value Health. 4:392–400. 2001.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Esparza-Romero J, Valencia ME,
Urquidez-Romero R, Chaudhari LS, Hanson RL, Knowler WC, Ravussin E,
Bennett PH and Schulz LO: Environmentally driven increases in type
2 diabetes and obesity in pima indians and non-pimas in mexico over
a 15-year period: The maycoba project. Diabetes Care. 38:2075–2082.
2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zimmet P, Alberti KG and Shaw J: Global
and societal implications of the diabetes epidemic. Nature.
414:782–787. 2001. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Jaenisch R and Bird A: Epigenetic
regulation of gene expression: How the genome integrates intrinsic
and environmental signals. Nat Genet. 33 Suppl:S245–S254. 2003.
View Article : Google Scholar
|
8
|
Klose RJ and Bird AP: Genomic DNA
methylation: The mark and its mediators. Trends Biochem Sci.
31:89–97. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang C, Li J, Xue H, Li Y, Huang J, Mai J,
Chen J, Cao J, Wu X, Guo D, et al: Type 2 diabetes mellitus
incidence in Chinese: Contributions of overweight and obesity.
Diabetes Res Clin Pract. 107:424–432. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Diamant M and Tushuizen ME: The metabolic
syndrome and endothelial dysfunction: Common highway to type 2
diabetes and CVD. Curr Diab Rep. 6:279–286. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nitert MD, Dayeh T, Volkov P, Elgzyri T,
Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y, et al:
Impact of an exercise intervention on DNA methylation in skeletal
muscle from first-degree relatives of patients with type 2
diabetes. Diabetes. 61:3322–3332. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Christensen BC, Houseman EA, Marsit CJ,
Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF,
Bueno R, et al: Aging and environmental exposures alter
tissue-specific DNA methylation dependent upon CpG island context.
PLoS Genet. 5:e10006022009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yoon G, Zheng Y, Zhang Z, Zhang H, Gao T,
Joyce B, Zhang W, Guan W, Baccarelli AA, Jiang W, et al: Ultra-high
dimensional variable selection with application to normative aging
study: DNA methylation and metabolic syndrome. Bmc Bioinformatics.
18:1562017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jung J, Jung Y, Gill B, Kim C, Hwang KJ,
Ju YR, Lee HJ, Chu H and Hwang GS: Metabolic responses to Orientia
tsutsugamushi infection in a mouse model. Plos Negl Trop Dis.
9:e34272015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Halsted CH and Medici V: Aberrant hepatic
methionine metabolism and gene methylation in the pathogenesis and
treatment of alcoholic steatohepatitis. Int J Hepatol.
2012:9597462012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Svingen GF, Schartum-Hansen H, Pedersen
ER, Ueland PM, Tell GS, Mellgren G, Njølstad PR, Seifert R, Strand
E, Karlsson T and Nygård O: Prospective associations of systemic
and urinary choline metabolites with incident type 2 diabetes. Clin
Chem. 62:755–765. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang BT, Dayeh TA, Kirkpatrick CL, Taneera
J, Kumar R, Groop L, Wollheim CB, Nitert MD and Ling C: Insulin
promoter DNA methylation correlates negatively with insulin gene
expression and positively with HbA(1c) levels in human pancreatic
islets. Diabetologia. 54:360–367. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang BT, Dayeh TA, Volkov PA, Kirkpatrick
CL, Malmgren S, Jing X, Renström E, Wollheim CB, Nitert MD and Ling
C: Increased DNA methylation and decreased expression of PDX-1 in
pancreatic islets from patients with type 2 diabetes. Mol
Endocrinol. 26:1203–1212. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cline GW, Magnusson I, Rothman DL,
Petersen KF, Laurent D and Shulman GI: Mechanism of impaired
insulin-stimulated muscle glucose metabolism in subjects with
insulin-dependent diabetes mellitus. J Clin Invest. 99:2219–2224.
1997. View Article : Google Scholar : PubMed/NCBI
|
20
|
Asmann YW, Carpenter JE, Short KR, Stump
CS and Nair KS: Altered skeletal muscle mitochondrial gene
transcriptions in response to insulin infusion in T2D patients.
Meeting of the American-Diabetes-Association. 53:2004.
|
21
|
Loria P, Lonardo A and Anania F: Liver and
diabetes. A vicious circle. Hepatol Res. 43:51–64. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kirchner H, Sinha I, Gao H, Ruby MA,
Schönke M, Lindvall JM, Barrès R, Krook A, Näslund E,
Dahlman-Wright K and Zierath JR: Altered DNA methylation of
glycolytic and lipogenic genes in liver from obese and type 2
diabetic patients. Mol Metab. 5:171–183. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Carvalho BS and Irizarry RA: A framework
for oligonucleotide microarray preprocessing. Bioinformatics.
26:2363–2367. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Assenov Y, Muller F, Lutsik P, Walter J,
Lengauer T and Bock C: Comprehensive analysis of DNA methylation
data with RnBeads. Nat Methods. 11:1138–1140. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Davis S, Du P, Bilke S, Triche T and
Bootwalla M: Methylumi: Handle Illumina methylation data. R
package. version 2.24.1. 2013.
|
26
|
Triche TJ Jr, Weisenberger DJ, Van Den
Berg D, Laird PW and Siegmund KD: Low-level processing of Illumina
Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 41:e902013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Teschendorff AE, Marabita F, Lechner M,
Bartlett T, Tegner J, Gomez-Cabrero D and Beck S: A beta-mixture
quantile normalization method for correcting probe design bias in
Illumina Infinium 450 k DNA methylation data. Bioinformatics.
29:189–196. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen YA, Lemire M, Choufani S, Butcher DT,
Grafodatskaya D, Zanke BW, Gallinger S, Hudson TJ and Weksberg R:
Discovery of cross-reactive probes and polymorphic CpGs in the
Illumina Infinium HumanMethylation450 microarray. Epigenetics.
8:203–209. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Smyth GK: limma: Linear models for
microarray data, In Bioinformatics and Computational Biology
Solutions Using R and Bioconductor. Gentleman R, Carey V, Dudoit S,
Irizarry R and Huber W: Springer; New York, NY: pp. 397–420.
2005
|
30
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Harris MA, Clark J, Ireland A, Lomax J,
Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C,
et al: The gene ontology (GO) database and informatics resource.
Nucleic Acids Res. 32:(Database Issue). D258–D261. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Von Mering C, Huynen M, Jaeggi D, Schmidt
S, Bork P and Snel B: STRING: A database of predicted functional
associations between proteins. Nucleic Acids Res. 31:258–261. 2003.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
He X and Zhang J: Why do hubs tend to be
essential in protein networks? PLoS Genet. 2:e882006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Janky RS, Verfaillie A, Imrichová H, Van
de Sande B, Standaert L, Christiaens V, Hulselmans G, Herten K,
Sanchez Naval M, Potier D, et al: iRegulon: From a gene list to a
gene regulatory network using large motif and track collections.
PLoS Comput Biol. 10:e10037312014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang J, Duncan D, Shi Z and Zhang B:
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): Update 2013.
Nucleic Acids Res. 41:W77–W83. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang B, Kirov S and Snoddy J: WebGestalt:
An integrated system for exploring gene sets in various biological
contexts. Nucleic Acids Res. 33:W741–W748. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hobert O: Gene regulation by transcription
factors and microRNAs. Science. 319:1785–1786. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhuo X, Zhang P and Hoerger TJ: Lifetime
direct medical costs of treating type 2 diabetes and diabetic
complications. Am J Prev Med. 45:253–261. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fu M, Wang C, Li Z, Sakamaki T and Pestell
RG: Minireview: Cyclin D1: Normal and abnormal functions.
Endocrinology. 145:5439–5447. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chowdhury MK, Montgomery MK, Morris MJ,
Cognard E, Shepherd PR and Smith GC: Glucagon phosphorylates serine
552 of β-catenin leading to increased expression of cyclin D1 and
c-Myc in the isolated rat liver. Arch Physiol Biochem. 121:88–96.
2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Dai C, Li N, Song G, Yang Y and Ning X:
Insulin-like growth factor 1 regulates growth of endometrial
carcinoma through PI3k signaling pathway in insulin-resistant type
2 diabetes. Am J Transl Res. 8:3329–3336. 2016.PubMed/NCBI
|
43
|
Taneera J, Fadista J, Ahlqvist E, Zhang M,
Wierup N, Renström E and Groop L: Expression profiling of cell
cycle genes in human pancreatic islets with and without type 2
diabetes. Mol Cell Endocrinol. 375:35–42. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Karachanak-Yankova S, Dimova R, Nikolova
D, Nesheva D, Koprinarova M, Maslyankov S, Tafradjiska R, Gateva P,
Velizarova M, Hammoudeh Z, et al: Epigenetic alterations in
patients with type 2 diabetes mellitus. Balkan J Med Genet.
18:15–24. 2016.PubMed/NCBI
|
45
|
Walker BA, Wardell CP, Chiecchio L, Smith
EM, Boyd KD, Neri A, Davies FE, Ross FM and Morgan GJ: Aberrant
global methylation patterns affect the molecular pathogenesis and
prognosis of multiple myeloma. Blood. 117:553–562. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Liu C and Lin JD: PGC-1 coactivators in
the control of energy metabolism. Acta Biochim Biophys Sin
(Shanghai). 43:248–257. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Semple RK, Crowley VC, Sewter CP, Laudes
M, Christodoulides C, Considine RV, Vidal-Puig A and O'rahilly S:
Expression of the thermogenic nuclear hormone receptor coactivator
PGC-1alpha is reduced in the adipose tissue of morbidly obese
subjects. Int J Obes Relat Metab Disord. 28:176–179. 2004.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Ruschke K, Fishbein L, Dietrich A, Klöting
N, Tönjes A, Oberbach A, Fasshauer M, Jenkner J, Schön MR, Stumvoll
M, et al: Gene expression of PPARgamma and PGC-1alpha in human
omental and subcutaneous adipose tissues is related to insulin
resistance markers and mediates beneficial effects of physical
training. Eur J Endocrinol. 162:515–523. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hammarstedt A, Jansson PA, Wesslau C, Yang
X and Smith U: Reduced expression of PGC-1 and insulin-signaling
molecules in adipose tissue is associated with insulin resistance.
Biochem Biophys Res Commun. 301:578–582. 2003. View Article : Google Scholar : PubMed/NCBI
|
50
|
Patti ME, Butte AJ, Crunkhorn S, Cusi K,
Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R,
et al: Coordinated reduction of genes of oxidative metabolism in
humans with insulin resistance and diabetes: Potential role of PGC1
and NRF1. Proc Natl Acad Sci USA. 100:8466–8471. 2003. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ling C, Del Guerra S, Lupi R, Rönn T,
Granhall C, Luthman H, Masiello P, Marchetti P, Groop L and Del
Prato S: Epigenetic regulation of PPARGC1A in human type 2 diabetic
islets and effect on insulin secretion. Diabetologia. 51:615–622.
2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Chypre M, Zaidi N and Smans K: ATP-citrate
lyase: A mini-review. Biochem Biophys Res Commun. 422:1–4. 2012.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Guay C, Madiraju SR, Aumais A, Joly E and
Prentki M: A role for ATP-citrate lyase, malic enzyme and
pyruvate/citrate cycling in glucose-induced insulin secretion. J
Biol Chem. 282:35657–35665. 2007. View Article : Google Scholar : PubMed/NCBI
|
54
|
Menendez J, Vazquez-Martin A, Ortega FJ
and Fernandez-Real JM: Fatty acid synthase: Association with
insulin resistance, type 2 diabetes, and cancer. Clin Chem.
55:425–438. 2009. View Article : Google Scholar : PubMed/NCBI
|
55
|
Xia Y, Wan X, Duan Q, He S and Wang X:
Inhibition of protein kinase B by palmitate in the insulin
signaling of HepG2 cells and the preventive effect of archidonic
acid on insulin resistance. Front Med China. 1:200–206. 2007.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Cordero P, Gome-Zuriz AM, Campion J,
Milagro FI and Martinez JA: Dietary supplementation with methyl
donors reduces fatty liver and modifies the fatty acid synthase DNA
methylation profile in rats fed an obesogenic diet. Genes Nutr.
8:105–113. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Dobrzyn P, Jazurek M and Dobrzyn A:
Stearoyl-CoA desaturase and insulin signaling-what is the molecular
switch? Biochim Biophys Acta. 1797:1189–1194. 2010. View Article : Google Scholar : PubMed/NCBI
|
58
|
Voss MD, Beha A, Tennagels N, Tschank G,
Herling AW, Quint M, Gerl M, Metz-Weidmann C, Haun G and Korn M:
Gene expression profiling in skeletal muscle of Zucker diabetic
fatty rats: Implications for a role of stearoyl-CoA desaturase 1 in
insulin resistance. Diabetologia. 48:2622–2630. 2005. View Article : Google Scholar : PubMed/NCBI
|
59
|
Schwenk RW, Jonas W, Ernst SB, Kammel A,
Jähnert M and Schürmann A: Diet-dependent alterations of hepatic
Scd1 expression are accompanied by differences in promoter
methylation. Horm Metab Res. 45:786–794. 2013. View Article : Google Scholar : PubMed/NCBI
|
60
|
Karahashi M, Hirata-Hanta Y, Kawabata K,
Tsutsumi D, Kametani M, Takamatsu N, Sakamoto T, Yamazaki T, Asano
S, Mitsumoto A, et al: Abnormalities in the metabolism of fatty
acids and triacylglycerols in the liver of the goto-kakizaki rat: A
model for non-obese type 2 diabetes. Lipids. 51:955–971. 2016.
View Article : Google Scholar : PubMed/NCBI
|
61
|
German MS: Glucose sensing in pancreatic
islet beta cells: The key role of glucokinase and the glycolytic
intermediates. Proc Natl Acad Sci USA. 90:1781–1785. 1993.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Matschinsky FM: Glucokinase, glucose
homeostasis, and diabetes mellitus. Curr Diab Rep. 5:171–176. 2005.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Muller YL, Piaggi P, Hoffman D, Huang K,
Gene B, Kobes S, Thearle MS, Knowler WC, Hanson RL, Baier LJ and
Bogardus C: Common genetic variation in the glucokinase gene (GCK)
is associated with type 2 diabetes and rates of carbohydrate
oxidation and energy expenditure. Diabetologia. 57:1382–1390. 2014.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Tang L, Ye H, Hong Q, Wang L, Wang Q, Wang
H, Xu L, Bu S, Zhang L, Cheng J, et al: Elevated CpG island
methylation of GCK gene predicts the risk of type 2 diabetes in
Chinese males. Gene. 547:329–333. 2014. View Article : Google Scholar : PubMed/NCBI
|
65
|
Valente A, Bicho M, Duarte R, Raposo JF
and Costa HS: Dietary sodium intake related with cysteine and
methionine in type 2 diabetic patients. Atherosclerosis.
235:e108–e109. 2014. View Article : Google Scholar
|
66
|
Chen HJ, Yang YF, Lai PY and Chen PF:
Analysis of chlorination, nitration, and nitrosylation of tyrosine
and oxidation of methionine and cysteine in hemoglobin from type 2
diabetes mellitus patients by nanoflow liquid chromatography tandem
mass spectrometry. Anal Chem. 88:9276–9284. 2016. View Article : Google Scholar : PubMed/NCBI
|
67
|
Velmurugan GV and White C: Cystathionine
gamma-lyase deficiency impairs H2S biosynthesis and vessel
reactivity in type-2 diabetes. FASEB J. 27 1 Suppl:S1091–S1093.
2013.
|
68
|
Hotta N, Kakuta H, Fukasawa H, Koh N,
Sakakibara F, Nakamura J, Hamada Y, Wakao T, Hara T, Mori K, et al:
Effect of a potent new aldose reductase inhibitor,
(5-(3-thienyltetrazol-1-yl)acetic acid (TAT), on diabetic
neuropathy in rats. Diabetes Res Clin Pract. 27:107–117. 1995.
View Article : Google Scholar : PubMed/NCBI
|