1
|
Widmann CN and Heneka MT: Long-term
cerebral consequences of sepsis. Lancet Neurol. 13:630–636. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Gofton TE and Young GB: Sepsis-associated
encephalopathy. Nat Rev Neurol. 8:557–566. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Iwashyna TJ, Ely EW, Smith DM and Langa
KM: Long-term cognitive impairment and functional disability among
survivors of severe sepsis. JAMA. 304:1787–1794. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gao R, Kan MQ, Wang SG, Yang RH and Zhang
SG: Disrupted tryptophan metabolism induced cognitive impairment in
a mouse model of sepsis-associated encephalopathy. Inflammation.
39:550–560. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Koh ES, Lee K, Kim SH, Kim YO, Jin DC,
Song HC, Choi EJ, Kim YL, Kim YS, Kang SW, et al: Serum
β2-microglobulin predicts mortality in peritoneal dialysis
patients: A prospective cohort study. Am J Nephrol. 42:91–98. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Villeda SA, Luo J, Mosher KI, Zou B,
Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, et al:
The ageing systemic milieu negatively regulates neurogenesis and
cognitive function. Nature. 477:90–94. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Smith LK, He Y, Park JS, Bieri G,
Snethlage CE, Lin K, Gontier G, Wabl R, Plambeck KE, Udeochu J, et
al: β2-microglobulin is a systemic pro-aging factor that impairs
cognitive function and neurogenesis. Nat Med. 21:932–937. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Murray AM: Cognitive impairment in the
aging dialysis and chronic kidney disease populations: An occult
burden. Adv Chronic Kidney Dis. 15:123–132. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Glynn MW, Elmer BM, Garay PA, Liu XB,
Needleman LA, El-Sabeawy F and McAllister AK: MHCI negatively
regulates synapse density during the establishment of cortical
connections. Nat Neurosci. 14:442–451. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Elmer BM and McAllister AK: Major
histocompatibility complex class I proteins in brain development
and plasticity. Trends Neurosci. 35:660–670. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Carrette O, Demalte I, Scherl A,
Yalkinoglu O, Corthals G, Burkhard P, Hochstrasser DF and Sanchez
JC: A panel of cerebrospinal fluid potential biomarkers for the
diagnosis of Alzheimer's disease. Proteomics. 3:1486–1494. 2003.
View Article : Google Scholar : PubMed/NCBI
|
12
|
McArthur JC, Nance-Sproson TE, Griffin DE,
Hoover D, Selnes OA, Miller EN, Margolick JB, Cohen BA, Farzadegan
H and Saah A: The diagnostic utility of elevation in cerebrospinal
fluid beta 2-microglobulin in HIV-1 dementia. Multicenter AIDS
cohort study. Neurology. 42:1707–1712. 1992. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gao R, Ji MH, Gao DP, Yang RH, Zhang SG,
Yang JJ and Shen JC: Neuroinflammation-induced downregulation of
hippocampacal neuregulin 1-ErbB4 signaling in the parvalbumin
interneurons might contribute to cognitive impairment in a mouse
model of sepsis-associated encephalopathy. Inflammation.
40:387–400. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gao R, Tang YH, Tong JH, Yang JJ, Ji MH
and Zhu SH: Systemic lipopolysaccharide administration-induced
cognitive impairments are reversed by erythropoietin treatment in
mice. Inflammation. 38:1949–1958. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Melani R, Chelini G, Cenni MC and Berardi
N: Enriched environment effects on remote object recognition
memory. Neuroscience. 352:296–305. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ji MH, Qiu LL, Tang H, Ju LS, Sun XR,
Zhang H, Jia M, Zuo ZY, Shen JC and Yang JJ: Sepsis-induced
selective parvalbumin interneuron phenotype loss and cognitive
impairments may be mediated by NADPH oxidase 2 activation in mice.
J Neuroinflammation. 12:1822015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu J, Dong L, Zhang M, Jia M, Zhang G, Qiu
L, Ji M and Yang J: Class I histone deacetylase inhibitor valproic
acid reverses cognitive deficits in a mouse model of septic
encephalopathy. Neurochem Res. 38:2440–2449. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Schramm P, Klein KU, Falkenberg L, Berres
M, Closhen D, Werhahn KJ, David M, Werner C and Engelhard K:
Impaired cerebrovascular autoregulation in patients with severe
sepsis and sepsis-associated delirium. Crit Care. 16:R1812012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Fang J, Lian Y, Xie K, Cai S and Wen P:
Epigenetic modulation of neuronal apoptosis and cognitive functions
in sepsis-associated encephalopathy. Neurol Sci. 35:283–288. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Berg RM, Møller K and Bailey DM:
Neuro-oxidative-nitrosative stress in sepsis. J Cereb Blood Flow
Metab. 31:1532–1544. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Okuno S, Ishimura E, Kohno K, Fujino-Katoh
Y, Maeno Y, Yamakawa T, Inaba M and Nishizawa Y: Serum
beta2-microglobulin level is a significant predictor of mortality
in maintenance haemodialysis patients. Nephrol Dial Transplant.
24:571–577. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu HC, Lee LC and Wang WJ: Associations
among serum Beta 2 microglobulin, malnutrition, inflammation, and
advanced cardiovascular event in patients with chronic kidney
disease. J Clin Lab Anal. 31–May;2017.doi: 10.1002/jcla.22056.
View Article : Google Scholar
|
23
|
Raikou VD and Kyriaki D: The relationship
between glycemic control, beta2-microglobulin and inflammation in
patients on maintenance dialysis treatment. J Diabetes Metab
Disord. 14:342015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Imamura Y, Wang H, Matsumoto N, Muroya T,
Shimazaki J, Ogura H and Shimazu T: Interleukin-1β causes long-term
potentiation deficiency in a mouse model of septic encephalopathy.
Neuroscience. 187:63–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hoshino K, Hayakawa M and Morimoto Y:
Minocycline prevents the impairment of hippocampal long-term
potentiation in the septic mouse. Shock. 48:209–214. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Snigdha S, Prieto GA, Petrosyan A,
Loertscher BM, Dieskau AP, Overman LE and Cotman CW: H3K9me3
inhibition improves memory, promotes spine formation, and increases
BDNF levels in the aged hippocampus. J Neurosci. 36:3611–3622.
2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yu H, Liao Y, Li T, Cui Y, Wang G, Zhao F
and Jin Y: Alterations of synaptic proteins in the hippocampus of
mouse offspring induced by developmental lead exposure. Mol
Neurobiol. 53:6786–6798. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhu D, Li C, Swanson AM, Villalba RM, Guo
J, Zhang Z, Matheny S, Murakami T, Stephenson JR, Daniel S, et al:
BAI1 regulates spatial learning and synaptic plasticity in the
hippocampus. J Clin Invest. 125:1497–1508. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chao HW, Tsai LY, Lu YL, Lin PY, Huang WH,
Chou HJ, Lu WH, Lin HC, Lee PT and Huang YS: Deletion of CPEB3
enhances hippocampus-dependent memory via increasing expressions of
PSD95 and NMDA receptors. J Neurosci. 33:17008–17022. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kim DM and Leem YH: Chronic stress-induced
memory deficits are reversed by regular exercise via AMPK-mediated
BDNF induction. Neuroscience. 324:271–285. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim E and Sheng M: PDZ domain proteins of
synapses. Nat Rev Neurosci. 5:771–781. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Şahin TD, Karson A, Balcı F, Yazır Y,
Bayramgürler D and Utkan T: TNF-alpha inhibition prevents cognitive
decline and maintains hippocampal BDNF levels in the unpredictable
chronic mild stress rat model of depression. Behav Brain Res.
292:233–240. 2015. View Article : Google Scholar : PubMed/NCBI
|