1
|
Siegel R, Desantis C and Jemal A:
Colorectal cancer statistics, 2014. CA Cancer J Clin. 64:104–117.
2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Edwards BK, Ward E, Kohler BA, Eheman C,
Zauber AG, Anderson RN, Jemal A, Schymura MJ, Lansdorp-Vogelaar I,
Seeff LC, et al: Annual report to the nation on the status of
cancer, 1975–2006, featuring colorectal cancer trends and impact of
interventions (risk factors, screening, and treatment) to reduce
future rates. Cancer. 116:544–573. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Feng B, Sun J, Ling TL, Lu AG, Wang ML,
Chen XY, Ma JJ, Li JW, Zang L, Han DP and Zheng MH: Laparoscopic
complete mesocolic excision (CME) with medial access for right-hemi
colon cancer: Feasibility and technical strategies. Surg Endosc.
26:3669–3675. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sun J1, Jiang T, Qiu Z, Cen G, Cao J,
Huang K, Pu Y, Liang H, Huang R and Chen S: Short-term and
medium-term clinical outcomes of laparoscopic-assisted and open
surgery for colorectal cancer: A single center retrospective
case-control study. BMC Gastroenterol. 11:852011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pienta KJ, McGregor N, Axelrod R and
Axelrod DE: ecological therapy for cancer: Defining tumors using an
ecosystem paradigm suggests new opportunities for novel cancer
treatments. Transl Oncol. 1:158–164. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li Q: Circulating tumor cells: Determining
its number and what it means. Cytometry A. 77:211–212.
2010.PubMed/NCBI
|
8
|
Folkman J, Merler E, Abernathy C and
Williams G: Isolation of a tumor factor responsible for
angiogenesis. J Exp Med. 133:275–288. 1971. View Article : Google Scholar : PubMed/NCBI
|
9
|
Seifert P and Spitznas M: Tumours may be
innervated. Virchows Arch. 438:228–231. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mitchell BS, Schumacher U and Kaiserling
E: Are tumours innervated? Immunohistological investigations using
antibodies against the neuronal marker protein gene product 9.5
(PGP 9.5) in benign, malignant and experimental tumours. Tumour
Biol. 15:269–274. 1994. View Article : Google Scholar : PubMed/NCBI
|
11
|
Seifert P, Benedic M and Effert P: Nerve
fibers in tumors of the human urinary bladder. Virchows Arch.
440:291–297. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kayahara M, Nakagawara H, Kitagawa H and
Ohta T: The nature of neural invasion by pancreatic cancer.
Pancreas. 35:218–223. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Albo D, Akay CL, Marshall CL, Wilks JA,
Verstovsek G, Liu H, Agarwal N, Berger DH and Ayala GE:
Neurogenesis in colorectal cancer is a marker of aggressive tumor
behavior and poor outcomes. Cancer. 117:4834–4845. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lolas G, Bianchi A and Syrigos KN:
Tumour-induced neoneurogenesis and perineural tumour growth: A
mathematical approach. Sci Rep. 6:206842016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Giger RJ, Hollis ER IId and Tuszynski MH:
Guidance molecules in axon regeneration. Cold Spring Harb Perspect
Biol. 2:a0018672010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mancino M, Ametller E, Gascón P and
Almendro V: The neuronal influence on tumor progression. Biochim
Biophys Acta. 1816:105–118. 2011.PubMed/NCBI
|
17
|
Zänker KS: The neuro-neoplastic synapse:
Does it exist? Prog Exp Tumor Res. 39:154–161. 2007.PubMed/NCBI
|
18
|
Magnon C, Hall SJ, Lin J, Xue X, Gerber L,
Freedland SJ and Frenette PS: Autonomic nerve development
contributes to prostate cancer progression. Science.
341:12363612013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tang J, Li Z, Lu L and Cho CH:
β-Adrenergic system, a backstage manipulator regulating tumour
progression and drug target in cancer therapy. Semin Cancer Biol.
23:533–542. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhao CM, Hayakawa Y, Kodama Y, Muthupalani
S, Westphalen CB, Andersen GT, Flatberg A, Johannessen H, Friedman
RA, Renz BW, et al: Denervation suppresses gastric tumorigenesis.
Sci Transl Med. 6:250ra1152014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Marjolaine PR, Michèle L, Benjamin D,
Bruno B and Muriel JS: Role of cholinergic receptors in colorectal
cancer: Potential therapeutic implications of vagus nerve
stimulation? J Cancer Ther. 4:1116–1131. 2013. View Article : Google Scholar
|
22
|
Hulme EC, Birdsall NJ and Buckley NJ:
Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol.
30:633–673. 1990. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jia Y, Jia Y, Zu S, Zhang Y, Xiao D, Wang
D and Ma X: Hypoxia-induced overexpression of alpha5 nicotinic
acetylcholine receptor of human lung cancer cell lines. 2014 IEEE
Workshop on Electronics, Computer and Applications. IEEE. 969–971.
2014.
|
24
|
Zhao Q, Yue J, Zhang C, Gu X, Chen H and
Xu L: Inactivation of M2 AChR/NF-κB signaling axis reverses
epithelial-mesenchymal transition (EMT) and suppresses migration
and invasion in non-small cell lung cancer (NSCLC). Oncotarget.
6:29335–29346. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Grando SA: Connections of nicotine to
cancer. Nat Rev Cancer. 14:419–429. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhao Y, Zhou W, Xue L, Zhang W and Zhan Q:
Nicotine activates YAP1 through nAChRs mediated signaling in
esophageal squamous cell cancer (ESCC). PLoS One. 9:e908362014.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Al-Wadei MH, Al-Wadei HA and Schuller HM:
Pancreatic cancer cells and normal pancreatic duct epithelial cells
express an autocrine catecholamine loop that is activated by
nicotinic acetylcholine receptors alpha3, α5, and α7. Mol Cancer
Res. 10:239–249. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Dang N, Meng X and Song H: Nicotinic
acetylcholine receptors and cancer. Biomed Rep. 4:515–518. 2016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Yue Y, Liu R, Cheng W, Hu Y, Li J, Pan X,
Peng J and Zhang P: GTS-21 attenuates lipopolysaccharide-induced
inflammatory cytokine production in vitro by modulating the Akt and
NF-κB signaling pathway through the α7 nicotinic acetylcholine
receptor. Int Immunopharmacol. 29:504–512. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wu C, Hu Z, Yu D, Huang L, Jin G, Liang J,
Guo H, Tan W, Zhang M, Qian J, et al: Genetic variants on
chromosome 15q25 associated with lung cancer risk in Chinese
populations. Cancer Res. 69:5065–5072. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Changeux JP: Nicotine addiction and
nicotinic receptors: Lessons from genetically modified mice. Nat
Rev Neurosci. 11:389–401. 2010. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Lee CH, Huang CS, Chen CS, Tu SH, Wang YJ,
Chang YJ, Tam KW, Wei PL, Cheng TC, Chu JS, et al: Overexpression
and activation of the alpha9-nicotinic receptor during
tumorigenesis in human breast epithelial cells. J Natl Cancer Inst.
102:1322–1335. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tu SH, Lin YC, Huang CC, Yang PS, Chang
HW, Chang CH, Wu CH, Chen LC and Ho YS: Protein phosphatase
Mg2+/Mn2+ dependent 1F promotes smoking-induced breast cancer by
inactivating phosphorylated-p53-induced signals. Oncotarget.
7:77516–77531. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Amin MB, Greene FL, Edge SB, Compton CC,
Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR and
Winchester DP: The eighth edition AJCC cancer staging manual:
Continuing to build a bridge from a population-based to a more
‘personalized’ approach to cancer staging. Ca Carcer J Clin.
67:93–99. 2017. View Article : Google Scholar
|
35
|
Ho YJ, Wang TC, Fan CH and Yeh CK: Current
progress in antivascular tumor therapy. Drug Discov Today.
22:1503–1515. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li M, Yang C, Liu X, Yuan L, Zhang F, Wang
M, Miao D, Gu X, Jiang S, Cui B, et al: EphA3 promotes malignant
transformation of colorectal epithelial cells by upregulating
oncogenic pathways. Cancer Lett. 383:195–203. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu X and Tüzün E: Are linear AChR epitopes
the real culprit in ocular myasthenia gravis. Med Hypotheses.
99:26–28. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wong HP, Yu L, Lam EK, Tai EK, Wu WK and
Cho CH: Nicotine promotes colon tumor growth and angiogenesis
through beta-adrenergic activation. Toxicol Sci. 97:279–287. 2007.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Wu CH, Lee CH and Ho YS: Nicotinic
acetylcholine receptor-based blockade: Applications of molecular
targets for cancer therapy. Clin Cancer Res. 17:3533–3541. 2011.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Lee CH, Chang YC, Chen CS, Tu SH, Wang YJ,
Chen LC, Chang YJ, Wei PL, Chang HW, Chang CH, et al: Crosstalk
between nicotine and estrogen-induced estrogen receptor activation
induces α9-nicotinic acetylcholine receptor expression in human
breast cancer cells. Breast Cancer Res Treat. 129:331–345. 2011.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Guertin KA, Gu F, Wacholder S, Freedman
ND, Panagiotou OA, Reyes-Guzman C and Caporaso NE: Time to first
morning cigarette and risk of chronic obstructive pulmonary
disease: Smokers in the PLCO cancer screening trial. PLoS One.
10:e01259732015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Luberto CM, Hyland KA, Streck JM, Temel B
and Park ER: Stigmatic and sympathetic attitudes toward cancer
patients who smoke: A qualitative analysis of an online discussion
board forum. Nicotine Tob Res. 18:2194–2201. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nuutinen S, Panula P and Salminen O:
Different hypothalamic nicotinic α7 receptor expression and
response to low nicotine dose in alcohol-preferring and
alcohol-avoiding rats. Alcohol Clin Exp Res. 40:329–334. 2016.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Cesario A, Russo P, Nastrucci C and
Granone P: Is α7-nAChR a possible target for lung cancer and
malignant pleural mesothelioma treatment. Curr Drug Targets.
13:688–694. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Holt JC, Lioudyno M, Athas G, Garcia MM,
Perin P and Guth PS: The effect of proteolytic enzymes on the
alpha9-nicotinic receptor-mediated response in isolated frog
vestibular hair cells. Hear Res. 152:25–42. 2001. View Article : Google Scholar : PubMed/NCBI
|
46
|
Guha P, Bandyopadhyaya G, Polumuri SK,
Chumsri S, Gade P, Kalvakolanu DV and Ahmed H: Nicotine promotes
apoptosis resistance of breast cancer cells and enrichment of side
population cells with cancer stem cell-like properties via a
signaling cascade involving galectin-3, α9 nicotinic acetylcholine
receptor and STAT3. Breast Cancer Res Treat. 145:5–22. 2014.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhou T, Wang Y, Guo CK, Zhang WJ, Yu H,
Zhang K and Kong WJ: Two distinct channels mediated by m2mAChR and
α9nAChR co-exist in type II vestibular hair cells of guinea pig.
Int J Mol Sci. 14:8818–8831. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kawashima K, Fujii T, Moriwaki Y and
Misawa H: Critical roles of acetylcholine and the muscarinic and
nicotinic acetylcholine receptors in the regulation of immune
function. Life Sci. 91:1027–1032. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Borovikova LV, Ivanova S, Zhang M, Yang H,
Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW and Tracey
KJ: Vagus nerve stimulation attenuates the systemic inflammatory
response to endotoxin. Nature. 405:458–462. 2000. View Article : Google Scholar : PubMed/NCBI
|
50
|
Bencherif M, Lippiello PM, Lucas R and
Marrero MB: Alpha7 nicotinic receptors as novel therapeutic targets
for inflammation-based diseases. Cell Mol Life Sci. 68:931–949.
2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhang R, Wugeti N, Sun J, Yan H, Guo Y,
Zhang L, Ma M, Guo X, Jiao C, Xu W, et al: Effects of vagus nerve
stimulation via cholinergic anti-inflammatory pathway activation on
myocardial ischemia/reperfusion injury in canine. Int J Clin Exp
Med. 7:2615–2623. 2014.PubMed/NCBI
|
52
|
Vicens P, Ribes D, Heredia L, Torrente M
and Domingo JL: Motor and anxiety effects of PNU-282987, an alpha7
nicotinic receptor agonist, and stress in an animal model of
Alzheimer's disease. Curr Alzheimer Res. 10:516–523. 2013.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Koopman FA, Schuurman PR, Vervoordeldonk
MJ and Tak PP: Vagus nerve stimulation: A new bioelectronics
approach to treat rheumatoid arthritis? Best Pract Res Clin
Rheumatol. 28:625–635. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Mazloom R, Eftekhari G, Rahimi-Balaei M,
Khori V, Hajizadeh S, Dehpour AR and Mani AR: Correction: The role
of α7 nicotinic acetylcholine receptor in modulation of heart rate
dynamics in endotoxemic rats. PLoS One. 10:e01278262015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Marrero MB and Bencherif M: Convergence of
alpha 7 nicotinic acetylcholine receptor-activated pathways for
anti-apoptosis and anti-inflammation: Central role for JAK2
activation of STAT3 and NF-kappaB. Brain Res. 1256:1–7. 2009.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Daianu M, Jahanshad N, Nir TM, Toga AW,
Jack CR Jr, Weiner MW and Thompson PM: Alzheimer's
DiseaseNeuroimaging Initiative: Breakdown of brain connectivity
between normal aging and Alzheimer's disease: A structural k-core
network analysis. Brain Connect. 3:407–422. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Musicco M, Adorni F, Di Santo S, Prinelli
F, Pettenati C, Caltagirone C, Palmer K and Russo A: Inverse
occurrence of cancer and Alzheimer disease: A population-based
incidence study. Neurology. 81:322–328. 2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Roe CM, Fitzpatrick AL, Xiong C, Sieh W,
Kuller L, Miller JP, Williams MM, Kopan R, Behrens MI and Morris
JC: Cancer linked to Alzheimer disease but not vascular dementia.
Neurology. 74:106–112. 2010. View Article : Google Scholar : PubMed/NCBI
|