1
|
Cohn JN, Bristow MR, Chien KR, Colucci WS,
Frazier OH, Leinwand LA, Lorell BH, Moss AJ, Sonnenblick EH, Walsh
RA, et al: Report of the national heart, lung, and blood institute
special emphasis panel on heart failure research. Circulation.
95:766–770. 1997. View Article : Google Scholar : PubMed/NCBI
|
2
|
Iadecola C: The pathobiology of vascular
dementia. Neuron. 80:844–866. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kitagawa K, Matsumoto M, Tagaya M, Hata R,
Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, et
al: ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res.
528:21–24. 1990. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dirnagl U, Simon RP and Hallenbeck JM:
Ischemic tolerance and endogenous neuroprotection. Trends Neurosci.
26:248–254. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu D, Lu C, Wan R, Auyeung WW and Mattson
MP: Activation of mitochondrial ATP-dependent potassium channels
protects neurons against ischemia-induced death by a mechanism
involving suppression of Bax translocation and cytochrome c
release. J Cereb Blood Flow Metab. 22:431–443. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shimizu K, Lacza Z, Rajapakse N, Horiguchi
T, Snipes J and Busija DW: MitoK(ATP) opener, diazoxide, reduces
neuronal damage after middle cerebral artery occlusion in the rat.
Am J Physiol Heart Circ Physiol. 283:H1005–H1011. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hausenloy DJ, Yellon DM, Mani-Babu S and
Duchen MR: Preconditioning protects by inhibiting the mitochondrial
permeability transition. Am J Physiol Heart Circ Physiol.
287:H841–H849. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wu L, Shen F, Lin L, Zhang X, Bruce IC and
Xia Q: The neuroprotection conferred by activating the
mitochondrial ATP-sensitive K+ channel is mediated by inhibiting
the mitochondrial permeability transition pore. Neurosci Lett.
402:184–189. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Busija DW, Katakam P, Rajapakse NC, Kis B,
Grover G, Domoki F and Bari F: Effects of ATP-sensitive potassium
channel activators diazoxide and BMS-191095 on membrane potential
and reactive oxygen species production in isolated piglet
mitochondria. Brain Res Bull. 66:85–90. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
He X, Mo X, Gu H, Chen F, Gu Q, Peng W, Qi
J, Shen L, Sun J, Zhang R and Kj Y: Neuroprotective effect of
diazoxide on brain injury induced by cerebral ischemia/reperfusion
during deep hypothermia. J Neurol Sci. 268:18–27. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang L, Zhu QL, Wang GZ, Deng TZ, Chen R,
Liu MH and Wang SW: The protective roles of mitochondrial
ATP-sensitive potassium channels during
hypoxia-ischemia-reperfusion in brain. Neurosci Lett. 491:63–67.
2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kaufman RJ: Orchestrating the unfolded
protein response in health and disease. J Clin Invest.
110:1389–1398. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Schröder M and Kaufman RJ: The mammalian
unfolded protein response. Annu Rev Biochem. 74:739–789. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Szegezdi E, Logue SE, Gorman AM and Samali
A: Mediators of endoplasmic reticulum stress-induced apoptosis.
EMBO Rep. 7:880–885. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sargsyan E, Ortsäter H, Thorn K and
Bergsten P: Diazoxide-induced beta-cell rest reduces endoplasmic
reticulum stress in lipotoxic beta-cells. J Endocrinol. 199:41–50.
2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kirino T and Sano K: Selective
vulnerability in the gerbil hippocampus following transient
ischemia. Acta Neuropathol. 62:201–208. 1984. View Article : Google Scholar : PubMed/NCBI
|
17
|
Horn M and Schlote W: Delayed neuronal
death and delayed neuronal recovery in the human brain following
global ischemia. Acta Neuropathol. 85:79–87. 1992. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ghosh A, Sarkar S, Mandal AK and Das N:
Neuroprotective role of nanoencapsulated quercetin in combating
ischemia-reperfusion induced neuronal damage in young and aged
rats. PLoS One. 8:e577352013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Han L, Xu C, Jiang C, Li H, Zhang W, Zhao
Y, Zhang L, Zhang Y, Zhao W and Yang B: Effects of polyamines on
apoptosis induced by simulated ischemia/reperfusion injury in
cultured neonatal rat cardiomyocytes. Cell Biol Int. 31:1345–1352.
2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Girard S, Brough D, Lopez-Castejon G,
Giles J, Rothwell NJ and Allan SM: Microglia and macrophages
differentially modulate cell death after brain injury caused by
oxygen-glucose deprivation in organotypic brain slices. Glia.
61:813–824. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Oketani N, Kakei M, Ichinari K, Okamura M,
Miyamura A, Nakazaki M, Ito S and Tei C: Regulation of K(ATP)
channels by P(2Y) purinoceptors coupled to PIP(2) metabolism in
guinea pig ventricular cells. Am J Physiol Heart Circ Physiol.
282:H757–H765. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nakka VP, Gusain A and Raghubir R:
Endoplasmic reticulum stress plays critical role in brain damage
after cerebral ischemia/reperfusion in rats. Neurotox Res.
17:189–202. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li Y, Chen J, Wang L, Lu M and Chopp M:
Treatment of stroke in rat with intracarotid administration of
marrow stromal cells. Neurology. 56:1666–1672. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Verma R, Harris NM, Friedler BD, Crapser
J, Patel AR, Venna V and McCullough LD: Reversal of the detrimental
effects of post-stroke social isolation by pair-housing is mediated
by activation of BDNF-MAPK/ERK in aged mice. Sci Rep. 6:251762016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Nakagawa T, Zhu H, Morishima N, Li E, Xu
J, Yankner BA and Yuan J: Caspase-12 mediates
endoplasmic-reticulum-specific apoptosis and cytotoxicity by
amyloid-beta. Nature. 403:98–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hitomi J, Katayama T, Taniguchi M, Honda
A, Imaizumi K and Tohyama M: Apoptosis induced by endoplasmic
reticulum stress depends on activation of caspase-3 via caspase-12.
Neurosci Lett. 357:127–130. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kondo F, Kondo Y, Makino H and Ogawa N:
Delayed neuronal death in hippocampal CA1 pyramidal neurons after
forebrain ischemia in hyperglycemic gerbils: Amelioration by
indomethacin. Brain Res. 853:93–98. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zarch AV, Toroudi HP, Soleimani M,
Bakhtiarian A, Katebi M and Djahanguiri B: Neuroprotective effects
of diazoxide and its antagonism by glibenclamide in pyramidal
neurons of rat hippocampus subjected to
ischemia-reperfusion-induced injury. Int J Neurosci. 119:1346–1361.
2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tabas I and Ron D: Integrating the
mechanisms of apoptosis induced by endoplasmic reticulum stress.
Nat Cell Biol. 13:184–190. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lakshmanan AP, Thandavarayan RA,
Palaniyandi SS, Sari FR, Meilei H, Giridharan VV, Soetikno V,
Suzuki K, Kodama M and Watanabe K: Modulation of
AT-1R/CHOP-JNK-Caspase12 pathway by olmesartan treatment attenuates
ER stress-induced renal apoptosis in streptozotocin-induced
diabetic mice. Eur J Pharm Sci. 44:627–634. 2011.PubMed/NCBI
|
31
|
Seimon TA, Obstfeld A, Moore KJ, Golenbock
DT and Tabas I: Combinatorial pattern recognition receptor
signaling alters the balance of life and death in macrophages. Proc
Natl Acad Sci USA. 103:19794–19799. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Timmins JM, Ozcan L, Seimon TA, Li G,
Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson EN and
Anderson ME: Calcium/calmodulin-dependent protein kinase II links
ER stress with Fas and mitochondrial apoptosis pathways. J Clin
Invest. 119:2925–2941. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li G, Scull C, Ozcan L and Tabas I: NADPH
oxidase links endoplasmic reticulum stress, oxidative stress, and
PKR activation to induce apoptosis. J Cell Biol. 191:1113–1125.
2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Palomeque J, Rueda OV, Sapia L, Valverde
CA, Salas M, Petroff MV and Mattiazzi A: Angiotensin II-induced
oxidative stress resets the Ca2+ dependence of Ca2+-calmodulin
protein kinase II and promotes a death pathway conserved across
different species. Circ Res. 105:1204–1212. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Murata M, Akao M, O'Rourke B and Marbán E:
Mitochondrial ATP-sensitive potassium channels attenuate matrix
Ca(2+) overload during simulated ischemia and reperfusion: Possible
mechanism of cardioprotection. Circ Res. 89:891–898. 2001.
View Article : Google Scholar : PubMed/NCBI
|