1
|
Bois Du P, Tortola Pablo C, Lodka D, Kny
M, Schmidt F, Song K, Schmidt S, Bassel-Duby R, Olson EN and
Fielitz J: Angiotensin II induces skeletal muscle atrophy by
activating TFEB-mediated MuRF1 expression. Circ Res. 117:424–436.
2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Iwai M, Chen R, Li Z, Shiuchi T, Suzuki J,
Ide A, Tsuda M, Okumura M, Min LJ, Mogi M and Horiuchi M: Deletion
of angiotensin II type 2 receptor exaggerated atherosclerosis in
apolipoprotein E-null mice. Circulation. 112:1636–1643. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Jones A, Deb R, Torsney E, Howe F, Dunkley
M, Gnaneswaran Y, Gaze D, Nasr H, Loftus IM, Thompson MM and
Cockerill GW: Rosiglitazone reduces the development and rupture of
experimental aortic aneurysms. Circulation. 119:3125–3146. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Qi Z, Li Z, Hao D, Wang T, Xia Y, Sun T,
Wang J, Zhuang F and Wang X: Association between angiopoietin-2 and
enterovirus 71 induced pulmonary edema. Indian J Pediatr.
83:391–396. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wu Z, Liu H, Ren W, Dai F, Chang J and Li
B: VE-cadherin involved in the pulmonary microvascular endothelial
cell barrier injury induced by angiotensin II through modulating
the cellular apoptosis and skeletal rearrangement. Am J Transl Res.
8:4310–4319. 2016.PubMed/NCBI
|
6
|
Yamamoto T, Harada N, Kano K, Taya S,
Canaani E, Matsuura Y, Mizoguchi A, Ide C and Kaibuchi K: The Ras
target AF-6 interacts with ZO-1 and serves as a peripheral
component of tight junctions in epithelial cells. J Cell Biol.
139:785–795. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Su L, Mruk DD, Lui WY, Lee WM and Cheng
CY: P-glycoprotein regulates blood-testis barrier dynamics via its
effects on the occludin/zonula occludens 1 (ZO-1) protein complex
mediated by focal adhesion kinase (FAK). Proc Natl Acad Sci USA.
108:19623–19628. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Brinkmann BF, Steinbacher T, Hartmann C,
Kummer D, Pajonczyk D, Mirzapourshafiyi F, Nakayama M, Weide T,
Gerke V and Ebnet K: VE-cadherin interacts with cell polarity
protein Pals1 to regulate vascular lumen formation. Mol Biol Cell.
27:2811–2821. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Iden S, Rehder D, August B, Suzuki A,
Wolburg-Buchholz K, Wolburg H, Ohno S, Behrens J, Vestweber D and
Ebnet K: A distinct PAR complex associates physically with
VE-cadherin in vertebrate endothelial cells. EMBO Rep. 7:1239–1246.
2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhou J, Xi Y, Mu X, Zhao R, Chen H, Zhang
L, Wu Y and Li Q: Antitumor immunity induced by VE-cadherin
modified DC vaccine. Oncotarget. 8:67369–67379. 2017.PubMed/NCBI
|
11
|
Li S, Ai N, Shen M, Dang Y, Chong CM, Pan
P, Kwan YW, Chan SW, Leung GPH, Hoi MPM, et al: Discovery of a ROCK
inhibitor, FPND, which prevents cerebral hemorrhage through
maintaining vascular integrity by interference with VE-cadherin.
Cell Death Discov. 3:170512017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ji Z, Zhao F, Meng LP, Zhou CZ, Tang WL,
Xu FK, Liu LB, Lv HT, Chi JF, Peng F and Guo HY: Chinese yellow
wine inhibits production of matrixmetalloproteinase-2 induced by
homocysteine in rat vascular endothelial cells. Int J Clin Exp Med.
9:838–852. 2016.
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-delta delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Mogielnicki A, Chabielska E, Pawlak R,
Szemraj J and Buczko W: Angiotensin II enhances thrombosis
development in renovascular hypertensive rats. Thromb Haemost.
93:1069–1076. 2005.PubMed/NCBI
|
15
|
Du J, Leng J, Zhang L, Bai G, Yang D, Lin
H and Qin J: Angiotensin II-induced apoptosis of human umbilical
vein endothelial cells was inhibited by blueberry anthocyanin
through bax- and Caspase 3-dependent pathways. Med Sci Monit.
22:3223–3228. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao F, Ji Z, Chi J, Tang W, Zhai X, Meng
L and Guo H: Effects of Chinese yellow wine on nitric oxide
synthase and intercellular adhesion molecule-1 expressions in rat
vascular endothelial cells. Acta Cardiol. 71:27–34. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Gurnik S, Devraj K, Macas J, Yamaji M,
Starke J, Scholz A, Sommer K, Di Tacchio M, Vutukuri R, Beck H, et
al: Angiopoietin-2-induced blood-brain barrier compromise and
increased stroke size are rescued by VE-PTP-dependent restoration
of Tie2 signaling. Acta Neuropathol. 131:753–773. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yu N, Wang Z, Chen Y, Yang J, Lu X, Guo Y,
Chen Z and Xu Z: The ameliorative effect of bloodletting puncture
at hand twelve Jing-well points on cerebral edema induced by
permanent middle cerebral ischemia via protecting the tight
junctions of the blood-brain barrier. BMC Complement Altern Med.
17:4702017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chang C, Liu H, Wei C, Chang L, Liang J,
Bei H, Li H, Liu S and Wu Y: Tongxinluo regulates expression of
tight junction proteins and alleviates endothelial cell monolayer
hyperpermeability via ERK-1/2 signaling pathway in oxidized
low-density lipoprotein-induced human umbilical vein endothelial
cells. Evid Based Complement Altern Med. 2017:41984862017.
View Article : Google Scholar
|
20
|
Furuse M, Fujita K, Hiiragi T, Fujimoto K
and Tsukita S: Claudin-1 and −2: Novel integral membrane proteins
localizing at tight junctions with no sequence similarity to
occludin. J Cell Biol. 141:1539–1550. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Stevenson BR, Siliciano JD, Mooseker MS
and Goodenough DA: Identification of ZO-1: A high molecular weight
polypeptide associated with the tight junction (zonula occludens)
in a variety of epithelia. J Cell Biol. 103:755–766. 1986.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Fredriksson-Lidman K, Van Itallie CM,
Tietgens AJ and Anderson JM: Sorbin and SH3 domain-containing
protein 2 (SORBS2) is a component of the acto-myosin ring at the
apical junctional complex in epithelial cells. PLoS One.
12:e01854482017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ruan YC, Wang Y, Da Silva N, Kim B, Diao
RY, Hill E, Brown D, Chan HC and Breton S: CFTR interacts with ZO-1
to regulate tight junction assembly and epithelial differentiation
through the ZONAB pathway. J Cell Sci. 127:4396–4408. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Sommers CL, Byers SW, Thompson EW, Torri
JA and Gelmann EP: Differentiation state and invasiveness of human
breast cancer cell lines. Breast Cancer Res Treat. 31:325–335.
1994. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li N, Lee WM and Cheng CY: Overexpression
of plastin 3 in Sertoli cells disrupts actin microfilament bundle
homeostasis and perturbs the tight junction barrier.
Spermatogenesis. 6:e12063532016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Guo J, Cai H, Zheng J, Liu X, Liu Y, Ma J,
Que Z, Gong W, Gao Y, Tao W and Xue Y: Long non-coding RNA NEAT1
regulates permeability of the blood-tumor barrier via
miR-181d-5p-mediated expression changes in ZO-1, occludin, and
claudin-5. Biochim Biophys Acta. 1863:2240–2254. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wei SC, Yang-Yen HF, Tsao PN, Weng MT,
Tung CC, Yu LCH, Lai LC, Hsiao JH, Chuang EY, Shun CT, et al:
SHANK3 regulates intestinal barrier function through modulating
ZO-1 expression through the PKCε-dependent pathway. Inflamm Bowel
Dis. 23:1730–1740. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Priest AV, Shafraz O and Sivasankar S:
Biophysical basis of cadherin mediated cell-cell adhesion. Exp Cell
Research. 358:10–13. 2017. View Article : Google Scholar
|
29
|
Delgado-Bellido D, Serrano-Saenz S,
Fernández-Cortés M and Oliver FJ: Vasculogenic mimicry signaling
revisited: Focus on non-vascular VE-cadherin. Mol Cancer.
16:652017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang R and Ge J: Proteinase-activated
receptor-2 modulates Ve-cadherin expression to affect human
vascular endothelial barrier function. J Cell Biochem.
118:4587–4593. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sauteur L, Affolter M and Belting HG:
Distinct and redundant functions of Esama and VE-cadherin during
vascular morphogenesis. Development. 144:1554–1565. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu W, Lv C, Zhang B, Zhou Q and Cao Z:
MicroRNA-27b functions as a new inhibitor of ovarian
cancer-mediated vasculogenic mimicry through suppression of
VE-cadherin expression. RNA. 23:1019–1027. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Taddei A, Giampietro C, Conti A, Orsenigo
F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S and
Dejana E: Endothelial adherens junctions control tight junctions by
VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol.
10:923–934. 2008. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Lampugnani MG, Orsenigo F, Gagliani MC,
Tacchetti C and Dejana E: Vascular endothelial cadherin controls
VEGFR-2 internalization and signaling from intracellular
compartments. J Cell Biol. 174:593–604. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gaengel K, Niaudet C, Hagikura K, Laviña
B, Muhl L, Hofmann JJ, Ebarasi L, Nyström S, Rymo S, Chen LL, et
al: The sphingosine-1-phosphate receptor S1PR1 restricts sprouting
angiogenesis by regulating the interplay between VE-cadherin and
VEGFR2. Dev Cell. 23:587–599. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Komarova YA, Huang F, Geyer M, Daneshjou
N, Garcia A, Idalino L, Kreutz B, Mehta D and Malik AB: VE-cadherin
signaling induces EB3 phosphorylation to suppress microtubule
growth and assemble adherens junctions. Mol Cell. 48:914–925. 2012.
View Article : Google Scholar : PubMed/NCBI
|