1
|
Liu W, Yang LH, Kong XC, An LK and Wang R:
Meta-analysis of osteoporosis: Fracture risks, medication and
treatment. Minerva Med. 106:203–214. 2015.PubMed/NCBI
|
2
|
Musette P, Brandi ML, Cacoub P, Kaufman
JM, Rizzoli R and Reginster JY: Treatment of osteoporosis:
Recognizing and managing cutaneous adverse reactions and
drug-induced hypersensitivity. Osteoporos Int. 21:723–732. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Gartlehner G, Patel SV, Feltner C, Weber
RP, Long R, Mullican K, Boland E, Lux L and Viswanathan M: Hormone
therapy for the primary prevention of chronic conditions in
postmenopausal women: Evidence report and systematic review for the
US preventive services task force. JAMA. 318:2234–2249. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hadji P, Papaioannou N, Gielen E, Tepie
Feudjo M, Zhang E, Frieling I, Geusens P, Makras P, Resch H, Möller
G, et al: Persistence, adherence, and medication-taking behavior in
women with postmenopausal osteoporosis receiving denosumab in
routine practice in Germany, Austria, Greece and Belgium: 12-month
results from a European non-interventional study. Osteoporosis Int.
26:2479–2489. 2015. View Article : Google Scholar
|
5
|
Bone HG, Dempster DW, Eisman JA, Greenspan
SL, McClung MR, Nakamura T, Papapoulos S, Shih WJ, Rybak-Feiglin A,
Santora AC, et al: Odanacatib for the treatment of postmenopausal
osteoporosis: Development history and design and participant
characteristics of LOFT, the long-term Odanacatib fracture trial.
Osteoporosis Int. 26:27212015. View Article : Google Scholar
|
6
|
Hannon RA, Clack G, Rimmer M, Swaisland A,
Lockton JA, Finkelman RD and Eastell R: Effects of the Src kinase
inhibitor saracatinib (AZD0530) on bone turnover in healthy men: A
randomized, double-blind, placebo-controlled,
multiple-ascending-dose phase I trial. J Bone Miner Res.
25:463–471. 2013. View Article : Google Scholar
|
7
|
Bonnick S, De Villiers T, Odio A, Palacios
S, Chapurlat R, DaSilva C, Scott BB, Le Bailly De Tilleghem C,
Leung AT and Gurner D: Effects of odanacatib on BMD and safety in
the treatment of osteoporosis in postmenopausal women previously
treated with alendronate: A randomized placebo-controlled trial. J
Clin Endocrinol Metab. 98:4727–4735. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bassett CA, Pawluk RJ and Pilla AA:
Augmentation of bone repair by inductively coupled electromagnetic
fields. Science. 184:575–577. 1974. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bassett CA, Pawluk RJ and Pilla AA:
Acceleration of fracture repair by electromagnetic fields. A
surgically noninvasive method. Ann N Y Acad Sci. 238:242–262. 1974.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang T, Wang P, Cao Z, Wang X, Wang D,
Shen Y, Jing D, Luo E and Tang W: Effects of BMP9 and pulsed
electromagnetic fields on the proliferation and osteogenic
differentiation of human periodontal ligament stem cells.
Bioelectromagnetics. 38:63–77. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou J, He H, Yang L, Chen S, Guo H, Xia
L, Liu H, Qin Y, Liu C, Wei X, et al: Effects of pulsed
electromagnetic fields on bone mass and Wnt/β-catenin signaling
pathway in ovariectomized rats. Arch Med Res. 274–282. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Jing D, Zhai M, Tong S, Xu F, Cai J, Shen
G, Wu Y, Li X, Xie K, Liu J, et al: Pulsed electromagnetic fields
promote osteogenesis and osseointegration of porous titanium
implants in bone defect repair through a Wnt/β-catenin
signaling-associated mechanism. Sci Rep. 24:320452016. View Article : Google Scholar
|
13
|
Urnukhsaikhan E, Cho H, Mishig-Ochir T,
Seo YK and Park JK: Pulsed electromagnetic fields promote survival
and neuronal differentiation of human BM-MSCs. Life Sci.
151:130–138. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kang KS, Hong JM, Seol YJ, Rhie JW, Jeong
YH and Cho DW: Short-term evaluation of electromagnetic field
pretreatment of adipose-derived stem cells to improve bone healing.
J Tissue Eng Regen Med. 9:1161–1171. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
He J, Zhang Y, Chen J, Zheng S, Huang H
and Dong X: Effects of pulsed electromagnetic fields on the
expression of NFATc1 and CAII in mouse osteoclast-like cells. Aging
Clin Exp Res. 27:13–19. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lei T, Liang Z, Li F, Tang C, Xie K, Wang
P, Dong X, Shan S, Jiang M, Xu Q, et al: Pulsed electromagnetic
fields (PEMF) attenuate changes in vertebral bone mass,
architecture and strength in ovariectomized mice. Bone. 108:10–19.
2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lin HY and Lin YJ: In vitro effects of low
frequency electromagnetic fields on osteoblast proliferation and
maturation in an inflammatory environment. Bioelectromagnetics.
32:552–560. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang D, Huang Y, Huang Z, Zhang R, Wang H
and Huang D: FTY-720P suppresses osteoclast formation by regulating
expression of interleukin-6 (IL-6), interleukin-4 (IL-4) and matrix
metalloproteinase 2 (MMP-2). Med Sci Monitor. 22:2187–2194. 2016.
View Article : Google Scholar
|
19
|
Yang J, Zhang J, Ding C, Dong D and Shang
P: Regulation of osteoblast differentiation and iron content in
MC3T3-E1 cells by static magnetic field with different intensities.
Biol Trace Elem Res. Oct 19–2017.(Epub ahead of print). doi:
10.1007/s12011-017-1161-5.
|
20
|
Barnaba SA, Ruzzini L, Di Martino A,
Lanotte A, Sgambato A and Denaro V: Clinical significance of
different effects of static and pulsed electromagnetic fields on
human osteoclast cultures. Rheumatol Int. 32:1025–1031. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Xie YF, Shi WG, Zhou J, Gao YH, Li SF,
Fang QQ, Wang MG, Ma HP, Wang JF, Xian CJ, et al: Pulsed
electromagnetic fields stimulate osteogenic differentiation and
maturation of osteoblasts by upregulating the expression of BMPRII
localized at the base of primary cilium. Bone. 93:22–32. 2016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Jing D, Li F, Jiang M, Cai J, Wu Y, Xie K,
Wu X, Tang C, Liu J, Guo W, et al: Pulsed electromagnetic fields
improve bone microstructure and strength in ovariectomized rats
through a Wnt/Lrp5/β-catenin signaling-associated mechanism. PLoS
One. 8:e793772013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chang K, Chang WH, Huang S, Huang S and
Shih C: Pulsed electromagnetic fields stimulation affects
osteoclast formation by modulation of osteoprotegerin, RANK ligand
and macrophage colony-stimulating factor. J Orthop Res.
23:1308–1314. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Boyle WJ, Simonet WS and Lacey DL:
Osteoclast differentiation and activation. Nature. 423:337–342.
2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xu H, Zhang J, Lei Y, Han Z, Rong D, Yu Q,
Zhao M and Tian J: Low frequency pulsed electromagnetic field
promotes C2C12 myoblasts proliferation via activation of MAPK/ERK
pathway. Biochem Biophys Res Commun. 479:97–102. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Park KH, Park B, Yoon DS, Kwon SH, Shin
DM, Lee JW, Lee HG, Shim JH, Park JH and Lee JM: Zinc inhibits
osteoclast differentiation by suppression of
Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun
Signal. 11:742013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kapetanakis NI, Uzan C, Jimenez-Pailhes
AS, Gouy S, Bentivegna E, Morice P, Caron O, Gourzones-Dmitriev C,
Le Teuff G and Busson P: Plasma miR-200b in ovarian carcinoma
patients: Distinct pattern of pre/post-treatment variation compared
to CA-125 and potential for prediction of progression-free
survival. Oncotarget. 6:36815–36824. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Halleen JM, Tiitinen SL, Ylipahkala H,
Fagerlund KM and Vӓӓnӓnen HK: Tartrate-resistant acid phosphatase
5b (TRACP 5b) as a marker of bone resorption. Clin Lab. 52:499–509.
2006.PubMed/NCBI
|
29
|
Liu H, Li D, Liu S, Liu Z and Li M:
Histochemical evidence of IGF2 mRNA-binding protein 2-mediated
regulation of osteoclast function and adhesive ability. Histochem
Cell Biol. 149:343–351. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Rachner TD, Khosla S and Hofbauer LC:
Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu HF, He HC, Yang L, Yang ZY, Yao K, Wu
YC, Yang XB and He CQ: Pulsed electromagnetic fields for
postmenopausal osteoporosis and concomitant lumbar osteoarthritis
in southwest China using proximal femur bone mineral density as the
primary endpoint: Study protocol for a randomized controlled trial.
Trials. 16:2652015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Muramatsu Y, Matsui T, Deie M and Sato K:
Pulsed electromagnetic field stimulation promotes anti-cell
proliferative activity in doxorubicin-treated mouse osteosarcoma
cells. In Vivo. 31:61–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Visagie A, Kasonga A, Deepak V, Moosa S,
Marais S, Kruger MC and Coetzee M: Commercial Honeybush
(cyclopia spp.) tea extract inhibits osteoclast formation
and bone resorption in RAW264.7 murine macrophages-an in vitro
study. Int J Environ Res Public Health. 12:13779–13793. 2015.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Collin-Osdoby P and Osdoby P:
RANKL-mediated osteoclast formation from murine RAW 264.7 cells.
Methods Mol Biol. 816:187–202. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wong BR, Besser D, Kim N, Arron JR,
Vologodskaia M, Hanafusa H and Choi Y: TRANCE, a TNF family member,
activates Akt/PKB through a signaling complex involving TRAF6 and
c-Src. Mol Cell. 4:1041–1049. 1999. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li L, Sapkota M, Gao M, Choi H and Soh Y:
Macrolactin F inhibits RANKL-mediated osteoclastogenesis by
suppressing Akt, MAPK and NFATc1 pathways and promotes
osteoblastogenesis through a BMP-2/smad/Akt/Runx2 signaling
pathway. Eur J Pharmacol. 815:202–209. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Navé BT, Ouwens M, Withers DJ, Alessi DR
and Shepherd PR: Mammalian target of rapamycin is a direct target
for protein kinase B: Identification of a convergence point for
opposing effects of insulin and amino-acid deficiency on protein
translation. Biochem J. 344:427–431. 1999. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hsieh CJ, Kuo PL, Hou MF, Hung JY, Chang
FR, Hsu YC, Huang YF, Tsai EM and Hsu YL: Wedelolactone inhibits
breast cancer-induced osteoclastogenesis by decreasing Akt/mTOR
signaling. Int J Oncol. 46:555–562. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Takeshita S: SHIP-deficient mice are
severely osteoporotic due to increased numbers of hyperresorptive
osteoclasts. Nat Med. 9:943–949. 2002. View
Article : Google Scholar
|