1
|
Estey EH: Acute myeloid leukemia: 2013
update on risk-stratification and management. Am J Hematol.
88:318–327. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Passegue E, Jamieson CH, Ailles LE and
Weissman IL: Normal and leukemic hematopoiesis: Are leukemias a
stem cell disorder or a reacquisition of stem cell characteristics?
Proc Natl Acad Sci USA. 100 Suppl 1:S11842–S11849. 2003. View Article : Google Scholar
|
3
|
Eppert K, Takenaka K, Lechman ER, Waldron
L, Nilsson B, van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J,
et al: Stem cell gene expression programs influence clinical
outcome in human leukemia. Nat Med. 17:1086–1093. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kreso A and Dick JE: Evolution of the
cancer stem cell model. Cell Stem Cell. 14:275–291. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Xu XH, Zhang L, Cao XX, Li J, Zhang W, Zhu
TN, Cai HC, Chen M, Han X, Yang C, et al: Evaluation of the
implementation rate of primary antifungal prophylaxis and the
prognosis of invasive fungal disease in acute leukemia patients in
China. J Infect Chemother. 23:360–367. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Marcucci G, Mrozek K, Radmacher MD, Garzon
R and Bloomfield CD: The prognostic and functional role of
microRNAs in acute myeloid leukemia. Blood. 117:1121–1129. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Khalaj M, Tavakkoli M, Stranahan AW and
Park CY: Pathogenic microRNA's in myeloid malignancies. Front
Genet. 5:3612014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Liao Q, Wang B, Li X and Jiang G: miRNAs
in acute myeloid leukemia. Oncotarget. 8:3666–3682. 2017.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zavala-Yoe R, Ramirez-Mendoza RA and
Cordero LM: Entropy measures to study and model long term
simultaneous evolution of children in Doose and Lennox-Gastaut
syndromes. J Integr Neurosci. 15:205–221. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bu W and Luo T: miR-1297 promotes cell
proliferation of non-small cell lung cancer cells: Involving in
PTEN/Akt/Skp2 signaling pathway. DNA Cell Biol. 36:976–982. 2017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Kang M, Li Y, Zhao Y, He S and Shi J:
miR-33a inhibits cell proliferation and invasion by targeting CAND1
in lung cancer. Clin Transl Oncol. 20:457–466. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xiong Y, Wang L, Li Y, Chen M, He W and Qi
L: The long non-coding RNA XIST interacted with MiR-124 to modulate
bladder cancer growth, invasion and migration by targeting androgen
receptor (AR). Cell Physiol Biochem. 43:405–418. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tran DDH, Kessler C, Niehus SE, Mahnkopf
M, Koch A and Tamura T: Myc target gene, long intergenic noncoding
RNA, Linc00176 in hepatocellular carcinoma regulates cell cycle and
cell survival by titrating tumor suppressor microRNAs. Oncogene.
37:75–85. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang S, Zhang Q, Shi G and Yin J:
MiR-182-5p regulates BCL2L12 and BCL2 expression in acute myeloid
leukemia as a potential therapeutic target. Biomed Pharmacother.
97:1189–1194. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang TJ, Lin J, Zhou JD, Li XX, Zhang W,
Guo H, Xu ZJ, Yan Y, Ma JC and Qian J: High bone marrow miR-19b
level predicts poor prognosis and disease recurrence in de novo
acute myeloid leukemia. Gene. 640:79–85. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ye P, Shi Y, An N, Zhou Q, Guo J and Long
X: miR-145 overexpression triggers alteration of the whole
transcriptome and inhibits breast cancer development. Biomed
Pharmacother. 100:72–82. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu YL, Wang GQ, Cui HX, Li XX, Xu ZL and
Wang XY: miRNA211 induces apoptosis of cervical cancer SiHa cells
via down-regulation of inhibitor of apoptosis proteins. Eur Rev Med
Pharmacol Sci. 22:336–342. 2018.PubMed/NCBI
|
20
|
Cao Y, Song J, Ge J, Song Z, Chen J and Wu
C: MicroRNA-100 suppresses human gastric cancer cell proliferation
by targeting CXCR7. Oncol Lett. 15:453–458. 2018.PubMed/NCBI
|
21
|
Wan L, Tian Y, Zhang R, Peng Z, Sun J and
Zhang W: MicroRNA-103 confers the resistance to long-treatment of
adriamycin to human leukemia cells by regulation of COP1. J Cell
Biochem. 119:3846–3852. 2018. View Article : Google Scholar
|
22
|
Liu L, Ren W and Chen K: MiR-34a promotes
apoptosis and inhibits autophagy by targeting HMGB1 in acute
myeloid leukemia cells. Cell Physiol Biochem. 41:1981–1992. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang Y, Tang P, Chen Y, Chen J, Ma R and
Sun L: Overexpression of microRNA-125b inhibits human acute myeloid
leukemia cells invasion, proliferation and promotes cells apoptosis
by targeting NF-kappaB signaling pathway. Biochem Biophys Res
Commun. 488:60–66. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ke S, Li RC, Lu J, Meng FK, Feng YK and
Fang MH: MicroRNA-192 regulates cell proliferation and cell cycle
transition in acute myeloid leukemia via interaction with CCNT2.
Int J Hematol. 106:258–265. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang X, Zuo D, Yuan Y, Yang X, Hong Z and
Zhang R: MicroRNA-183 promotes cell proliferation via regulating
programmed cell death 6 in pediatric acute myeloid leukemia. J
Cancer Res Clin Oncol. 143:169–180. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang T and Wang N: miR-135a confers
resistance to gefitinib in non-small cell lung cancer cells by
upregulation of RAC1. Oncol Res. Jan 31–2018.(Epub ahead of print).
View Article : Google Scholar
|
27
|
Zhao X, Sun Z, Li H, Jiang F, Zhou J and
Zhang L: MiR-135a-5p modulates biological functions of thyroid
carcinoma cells via targeting VCAN 3′-UTR. Cancer Biomark.
20:207–216. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zubieta Gomez DM, Hamood MA, Beydoun R,
Pall AE and Kondapalli KC: MicroRNA-135a regulates NHE9 to inhibit
proliferation and migration of glioblastoma cells. Cell Commun
Signal. 15:552017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang X, Gao F, Zhou L, Wang H, Shi G and
Tan X: UCA1 regulates the growth and metastasis of pancreatic
cancer by sponging miR-135a. Oncol Res. 25:1529–1541. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
von Felden J, Heim D, Schulze K, Krech T,
Ewald F, Nashan B, Lohse AW and Wege H: High expression of micro
RNA-135A in hepatocellular carcinoma is associated with recurrence
within 12 months after resection. BMC Cancer. 17:602017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yan LH, Chen ZN, Li L, Chen J, Wei WE, Mo
XW, Qin YZ, Lin Y and Chen JS: miR-135a promotes gastric cancer
progression and resistance to oxaliplatin. Oncotarget.
7:70699–70714. 2006.
|
32
|
Yoshida H, Broaddus R, Cheng W, Xie S and
Naora H: Deregulation of the HOXA10 homeobox gene in endometrial
carcinoma: role in epithelial-mesenchymal transition. Cancer Res.
66:889–897. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bei L, Lu Y, Bellis SL, Zhou W, Horvath E
and Eklund EA: Identification of a HoxA10 activation domain
necessary for transcription of the gene encoding beta3 integrin
during myeloid differentiation. J Biol Chem. 282:16846–16859. 2007.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang HY, Li JH, Li G and Wang SR:
Activation of ARK5/miR-1181/HOXA10 axis promotes
epithelial-mesenchymal transition in ovarian cancer. Oncol Rep.
34:1193–1202. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tang W, Jiang Y, Mu X, Xu L, Cheng W and
Wang X: MiR-135a functions as a tumor suppressor in epithelial
ovarian cancer and regulates HOXA10 expression. Cell Signal.
26:1420–1426. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sun S, Su C, Zhu Y, Li H, Liu N, Xu T, Sun
C and Lv Y: MicroRNA-544a regulates migration and invasion in
colorectal cancer cells via regulation of homeobox A10. Dig Dis
Sci. 61:2535–2544. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Carrera M, Bitu CC, de Oliveira CE, Graner
E, Manninen A, Salo T and Coletta RD: HOXA10 controls
proliferation, migration and invasion in oral squamous cell
carcinoma. Int J Clin Exp Pathol. 8:3613–3623. 2015.PubMed/NCBI
|
38
|
Xiao ZD, Jiao CY, Huang HT, He LJ, Zhao
JJ, Lu ZY and Liu LX: miR-218 modulate hepatocellular carcinoma
cell proliferation through PTEN/AKT/PI3K pathway and HoxA10. Int J
Clin Exp Pathol. 7:4039–4044. 2014.PubMed/NCBI
|
39
|
Li B, Cao X, Weng C, Wu Y, Fang X, Zhang X
and Liu G: HoxA10 induces proliferation in human prostate carcinoma
PC-3 cell line. Cell Biochem Biophys. 70:1363–1368. 2014.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Cui XP, Qin CK, Zhang ZH, Su ZX, Liu X,
Wang SK and Tian XS: HOXA10 promotes cell invasion and MMP-3
expression via TGFβ2-mediated activation of the p38 MAPK pathway in
pancreatic cancer cells. Dig Dis Sci. 59:1442–1451. 2014.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Shah CA, Bei L, Wang H, Platanias LC and
Eklund EA: HoxA10 protein regulates transcription of gene encoding
fibroblast growth factor 2 (FGF2) in myeloid cells. J Biol Chem.
287:18230–18248. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang H, Lindsey S, Konieczna I, Bei L,
Horvath E, Huang W, Saberwal G and Eklund EA: Constitutively active
SHP2 cooperates with HoxA10 overexpression to induce acute myeloid
leukemia. J Biol Chem. 284:2549–2567. 2009. View Article : Google Scholar : PubMed/NCBI
|