1
|
Charlton MR, Burns JM, Pedersen RA, Watt
KD, Heimbach JK and Dierkhising RA: Frequency and outcomes of liver
transplantation for nonalcoholic steatohepatitis in the United
States. Gastroenterology. 141:1249–1253. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Michelotti GA, Machado MV and Diehl AM:
NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol.
10:656–665. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Miquilena-Colina ME, Lima-Cabello E,
Sánchez-Campos S, García-Mediavilla MV, Fernández-Bermejo M,
Lozano-Rodríguez T, Vargas-Castrillón J, Buqué X, Ochoa B,
Aspichueta P, et al: Hepatic fatty acid translocase CD36
upregulation is associated with insulin resistance,
hyperinsulinaemia and increased steatosis in non-alcoholic
steatohepatitis and chronic hepatitis C. Gut. 60:1394–1402. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Cao D, Luo J, Chen D, Xu H, Shi H, Jing X
and Zang W: CD36 regulates lipopolysaccharide-induced signaling
pathways and mediates the internalization of Escherichia coli in
cooperation with TLR4 in goat mammary gland epithelial cells. Sci
Rep. 6:231322016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Escande C, Chini CC, Nin V, Dykhouse KM,
Novak CM, Levine J, van Deursen J, Gores GJ, Chen J, Lou Z and
Chini EN: Deleted in breast cancer-1 regulates SIRT1 activity and
contributes to high-fat diet-induced liver steatosis in mice. J
Clin Invest. 120:545–558. 2010. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Cao L, Liu C, Wang F and Wang H: SIRT1
negatively regulates amyloid-beta-induced inflammation via the
NF-κB pathway. Braz J Med Biol Res. 46:659–669. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wenfeng Z, Yakun W, Di M, Jianping G,
Chuanxin W and Chun H: Kupffer cells: Increasingly significant role
in nonalcoholic fatty liver disease. Ann Hepatol. 13:489–495.
2014.PubMed/NCBI
|
8
|
Li PZ, Li JZ, Li M, Gong JP and He K: An
efficient method to isolate and culture mouse Kupffer cells.
Immunol Lett. 158:52–56. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bustin SA, Benes V, Garson JA, Hellemans
J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL,
et al: The MIQE guidelines: Minimum information for publication of
quantitative real-time PCR experiments. Clin Chem. 55:611–622.
2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Colak Y, Yesil A, Mutlu HH, Caklili OT,
Ulasoglu C, Senates E, Takir M, Kostek O, Yilmaz Y, Enc Yilmaz F,
et al: A potential treatment of non-alcoholic fatty liver disease
with SIRT1 activators. J Gastrointestin Liver Dis. 23:311–319.
2014.PubMed/NCBI
|
11
|
Yamazaki Y, Usui I, Kanatani Y, Matsuya Y,
Tsuneyama K, Fujisaka S, Bukhari A, Suzuki H, Senda S, Imanishi S,
et al: Treatment with SRT1720, a SIRT1 activator, ameliorates fatty
liver with reduced expression of lipogenic enzymes in MSG mice. Am
J Physiol Endocrinol Metab. 297:E1179–E1186. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yeung F, Hoberg JE, Ramsey CS, Keller MD,
Jones DR, Frye RA and Mayo MW: Modulation of NF-kappaB-dependent
transcription and cell survival by the SIRT1 deacetylase. EMBO J.
23:2369–2380. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim E, Choi Y, Jang J and Park T:
Carvacrol protects against hepatic steatosis in mice fed a high-fat
diet by enhancing SIRT1-AMPK signaling. Evid Based Complement
Alternat Med. 2013:2901042013.PubMed/NCBI
|
14
|
Cao Y, Xue Y, Xue L, Jiang X, Wang X,
Zhang Z, Yang J, Lu J, Zhang C, Wang W and Ning G: Hepatic menin
recruits SIRT1 to control liver steatosis through histone
deacetylation. J Hepatol. 59:1299–1306. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bertolotti M, Lonardo A, Mussi C, Baldelli
E, Pellegrini E, Ballestri S, Romagnoli D and Loria P: Nonalcoholic
fatty liver disease and aging: Epidemiology to management. World J
Gastroenterol. 20:14185–14204. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chau MD, Gao J, Yang Q, Wu Z and Gromada
J: Fibroblast growth factor 21 regulates energy metabolism by
activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci
USA. 107:12553–12558. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jeppesen J, Albers PH, Rose AJ, Birk JB,
Schjerling P, Dzamko N, Steinberg GR and Kiens B:
Contraction-induced skeletal muscle FAT/CD36 trafficking and FA
uptake is AMPK independent. J Lipid Res. 52:699–711. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Samovski D, Sun J, Pietka T, Gross RW,
Eckel RH, Su X, Stahl PD and Abumrad NA: Regulation of AMPK
activation by CD36 links fatty acid uptake to β-oxidation.
Diabetes. 64:353–359. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Silverstein RL and Febbraio M: CD36, a
scavenger receptor involved in immunity, metabolism, angiogenesis,
and behavior. Sci Signal. 2:re32009. View Article : Google Scholar : PubMed/NCBI
|
20
|
García-Monzón C, Lo Iacono O, Crespo J,
Romero-Gómez M, García-Samaniego J, Fernández-Bermejo M,
Domínguez-Díez A, de Cía Rodríguez J, Sáez A, Porrero JL, et al:
Increased soluble CD36 is linked to advanced steatosis in
nonalcoholic fatty liver disease. Eur J Clin Invest. 44:65–73.
2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wilson CG, Tran JL, Erion DM, Vera NB,
Febbraio M and Weiss EJ: Hepatocyte-specific disruption of CD36
attenuates fatty liver and improves insulin sensitivity in HFD-fed
mice. Endocrinology. 157:570–585. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen YP, Tsai CW, Shen CY, Day CH, Yeh YL,
Chen RJ, Ho TJ, Padma VV, Kuo WW and Huang CY: Palmitic acid
interferes with energy metabolism balance by adversely switching
the SIRT1-CD36-fatty acid pathway to the PKC zeta-GLUT4-glucose
pathway in cardiomyoblasts. J Nutr Biochem. 31:137–149. 2016.
View Article : Google Scholar : PubMed/NCBI
|