1
|
Danaei G, Vander Hoorn S, Lopez AD, Murray
CJ and Ezzati M: Comparative Risk Assessment collaborating group
(Cancers): Causes of cancer in the world: Comparative risk
assessment of nine behavioural and environmental risk factors.
Lancet. 366:1784–1793. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Guggenheim DE and Shah MA: Gastric cancer
epidemiology and risk factors. J Surg Oncol. 107:230–236. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Jiang X, Tseng CC, Bernstein L and Wu AH:
Family history of cancer and gastroesophageal disorders and risk of
esophageal and gastric adenocarcinomas: A case-control study. BMC
Cancer. 14:602014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yaghoobi M, Bijarchi R and Narod SA:
Family history and the risk of gastric cancer. Br J Cancer.
102:237–242. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jemal A, Center MM, DeSantis C and Ward
EM: Global patterns of cancer incidence and mortality rates and
trends. Cancer Epidemiol Biomarkers Prev. 19:1893–1907. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Catalano V, Labianca R, Beretta GD, Gatta
G, de Braud F and Van Cutsem E: Gastric cancer. Crit Rev Oncol
Hematol. 71:127–164. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wright JD and Herzog TJ: Human
papillomavirus: Emerging trends in detection and management. Curr
Womens Health Rep. 2:259–265. 2002.PubMed/NCBI
|
9
|
Franco EL: Epidemiology of anogenital
warts and cancer. Obstet Gynecol Clin North Am. 23:597–623.
1996.PubMed/NCBI
|
10
|
Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F,
Xiao Y, Guang-Xiu W, Zhi-Fan J, Pei-Yu P, Qing-Yu Z and Chun-Sheng
K: MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell
proliferation and radioresistance by targeting PTEN. BMC Cancer.
10:3672010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hamada M, Fujiwara T, Hizuta A, Gochi A,
Naomoto Y, Takakura N, Takahashi K, Roth JA, Tanaka N and Orita K:
The p53 gene is a potent determinant of chemosensitivity and
radiosensitivity in gastric and colorectal cancers. J Cancer Res
Clin Oncol. 122:360–365. 1996. View Article : Google Scholar : PubMed/NCBI
|
12
|
Qiu H, Yashiro M, Shinto O, Matsuzaki T
and Hirakawa K: DNA methyltransferase inhibitor 5-aza-CdR enhances
the radiosensitivity of gastric cancer cells. Cancer Sci.
100:181–188. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Furuyama T, Tie F and Harte PJ: Polycomb
group proteins ESC and E(Z) are present in multiple distinct
complexes that undergo dynamic changes during development. Genesis.
35:114–124. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Müller J, Hart CM, Francis NJ, Vargas ML,
Sengupta A, Wild B, Miller EL, O'Connor MB, Kingston RE and Simon
JA: Histone methyltransferase activity of a Drosophila Polycomb
group repressor complex. Cell. 111:197–208. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Döhner H, Fischer K, Bentz M, Hansen K,
Benner A, Cabot G, Diehl D, Schlenk R, Coy J, Stilgenbauer S, et
al: p53 gene deletion predicts for poor survival and non-response
to therapy with purine analogs in chronic B-cell leukemias. Blood.
85:1580–1589. 1995.PubMed/NCBI
|
16
|
Eastham JA, Hall SJ, Sehgal I, Wang J,
Timme TL, Yang G, Connell-Crowley L, Elledge SJ, Zhang WW, Harper
JW, et al: In vivo gene therapy with p53 or p21 adenovirus for
prostate cancer. Cancer Res. 55:5151–5155. 1995.PubMed/NCBI
|
17
|
Lang FF, Bruner JM, Fuller GN, Aldape K,
Prados MD, Chang S, Berger MS, McDermott MW, Kunwar SM, Junck LR,
et al: Phase I trial of adenovirus-mediated p53 gene therapy for
recurrent glioma: Biological and clinical results. J Clin Oncol.
21:2508–2518. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Parthun MR, Widom J and Gottschling DE:
The major cytoplasmic histone acetyltransferase in yeast: Links to
chromatin replication and histone metabolism. Cell. 87:85–94. 1996.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Loyola A and Almouzni G: Histone
chaperones, a supporting role in the limelight. Biochim Biophys
Acta. 1677:3–11. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Scuto A, Zhang H, Zhao H, Rivera M,
Yeatman TJ, Jove R and Torres-Roca JF: RbAp48 regulates
cytoskeletal organization and morphology by increasing K-Ras
activity and signaling through mitogen-activated protein kinase.
Cancer Res. 67:10317–10324. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Brehm A, Miska EA, McCance DJ, Reid JL,
Bannister AJ and Kouzarides T: Retinoblastoma protein recruits
histone deacetylase to repress transcription. Nature. 391:597–601.
1998. View Article : Google Scholar : PubMed/NCBI
|
22
|
Luo RX, Postigo AA and Dean DC: Rb
interacts with histone deacetylase to repress transcription. Cell.
92:463–473. 1998. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bae SM, Lee CH, Cho YL, Nam KH, Kim YW,
Kim CK, Han BD, Lee YJ, Chun HJ and Ahn WS: Two-dimensional gel
analysis of protein expression profile in squamous cervical cancer
patients. Gynecol Oncol. 99:26–35. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cheng Q, Lau WM, Tay SK, Chew SH, Ho TH
and Hui KM: Identification and characterization of genes involved
in the carcinogenesis of human squamous cell cervical carcinoma.
Int J Cancer. 98:419–426. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pardo M, García A, Thomas B, Piñeiro A,
Akoulitchev A, Dwek RA and Zitzmann N: Proteome analysis of a human
uveal melanoma primary cell culture by 2-DE and MS. Proteomics.
5:4980–4993. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Verreault A, Kaufman PD, Kobayashi R and
Stillman B: Nucleosome assembly by a complex of CAF-1 and
acetylated histones H3/H4. Cell. 87:95–104. 1996. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xue Y, Wong J, Moreno GT, Young MK, Côté J
and Wang W: NURD, a novel complex with both ATP-dependent
chromatin-remodeling and histone deacetylase activities. Mol Cell.
2:851–861. 1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Torres-Roca JF, Eschrich S, Zhao H, Bloom
G, Sung J, McCarthy S, Cantor AB, Scuto A, Li C, Zhang S, et al:
Prediction of radiation sensitivity using a gene expression
classifier. Cancer Res. 65:7169–7176. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zheng L, Tang W, Wei F, Wang H, Liu J, Lu
Y, Cheng Y, Bai X, Yu X and Zhao W: Radiation-inducible protein
RbAp48 contributes to radiosensitivity of cervical cancer cells.
Gynecol Oncol. 130:601–608. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kong L, Yu XP, Bai XH, Zhang WF, Zhang Y,
Zhao WM, Jia JH, Tang W, Zhou YB and Liu CJ: RbAp48 is a critical
mediator controlling the transforming activity of human
papillomavirus type 16 in cervical cancer. J Biol Chem.
282:26381–26391. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Teyssier F, Bay JO, Dionet C and Verrelle
P: Cell cycle regulation after exposure to ionizing radiation. Bull
Cancer. 86:345–357. 1999.PubMed/NCBI
|
32
|
Iliakis G, Wang Y, Guan J and Wang H: DNA
damage checkpoint control in cells exposed to ionizing radiation.
Oncogene. 22:5834–5847. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Miyata H, Doki Y, Yamamoto H, Kishi K,
Takemoto H, Fujiwara Y, Yasuda T, Yano M, Inoue M, Shiozaki H, et
al: Overexpression of CDC25B overrides radiation-induced G2-M
arrest and results in increased apoptosis in esophageal cancer
cells. Cancer Res. 61:3188–3193. 2001.PubMed/NCBI
|
34
|
Bulavin DV, Higashimoto Y, Popoff IJ,
Gaarde WA, Basrur V, Potapova O, Appella E and Fornace AJ Jr:
Initiation of a G2/M checkpoint after ultraviolet radiation
requires p38 kinase. Nature. 411:102–107. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jin P, Gu Y and Morgan DO: Role of
inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in
human cells. J Cell Biol. 134:963–970. 1996. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kao GD, McKenna WG, Maity A, Blank K and
Muschel RJ: Cyclin B1 availability is a rate-limiting component of
the radiation-induced G2 delay in HeLa cells. Cancer Res.
57:753–758. 1997.PubMed/NCBI
|
37
|
Maity A, McKenna WG and Muschel RJ:
Evidence for post-transcriptional regulation of cyclin B1 mRNA in
the cell cycle and following irradiation in HeLa cells. EMBO J.
14:603–609. 1995.PubMed/NCBI
|
38
|
Porter LA, Singh G and Lee JM: Abundance
of cyclin B1 regulates gamma-radiation-induced apoptosis. Blood.
95:2645–2650. 2000.PubMed/NCBI
|
39
|
Sui X, Cai J, Li H, He C, Zhou C, Dong Y,
Chen L, Zhang B, Wang Y, Zhang Y, et al: p53-dependent CD51
expression contributes to characteristics of cancer stem cells in
prostate cancer. Cell Death Dis. 9:5232018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pérez-Yépez EA, Saldívar-Cerón HI,
Villamar-Cruz O, Pérez-Plasencia C and Arias-Romero LE: p21
Activated kinase 1: Nuclear activity and its role during DNA damage
repair. DNA Repair (Amst). 65:42–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Galanos P, Pappas G, Polyzos A, Kotsinas
A, Svolaki I, Giakoumakis NN, Glytsou C, Pateras IS, Swain U,
Souliotis VL, et al: Mutational signatures reveal the role of RAD52
in p53-independent p21-driven genomic instability. Genome Biol.
19:372018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang Y, Qiu C, Lu N, Liu Z, Jin C, Sun C,
Bu H, Yu H, Dongol S and Kong B: FOXD1 is targeted by miR-30a-5p
and miR-200a-5p and suppresses the proliferation of human ovarian
carcinoma cells by promoting p21 expression in a p53-independent
manner. Int J Oncol. 52:2130–2142. 2018.PubMed/NCBI
|
43
|
Kim KW, Moretti L, Mitchell LR, Jung DK
and Lu B: Endoplasmic reticulum stress mediates radiation-induced
autophagy by perk-eIF2alpha in caspase-3/7-deficient cells.
Oncogene. 29:3241–3251. 2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C,
Karasuyama H, Su MS, Rakic P and Flavell RA: Reduced apoptosis and
cytochrome c-mediated caspase activation in mice lacking caspase 9.
Cell. 94:325–337. 1998. View Article : Google Scholar : PubMed/NCBI
|
45
|
Franke TF, Kaplan DR and Cantley LC: PI3K:
Downstream AKTion blocks apoptosis. Cell. 88:435–437. 1997.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Larue L and Bellacosa A:
Epithelial-mesenchymal transition in development and cancer: Role
of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene.
24:7443–7454. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Sun G, Wang X, Li T, Qu S and Sun J:
Taurine attenuates acrylamide-induced apoptosis via a
PI3K/AKT-dependent manner. Hum Exp Toxicol. Jan 1–2018.(Epub ahead
of print). View Article : Google Scholar
|
48
|
Weng HY, Hsu MJ, Wang CC, Chen BC, Hong
CY, Chen MC, Chiu WT and Lin CH: Zerumbone suppresses IKKa, Akt,
and FOXO1 activation, resulting in apoptosis of GBM 8401 cells. J
Biomed Sci. 19:862012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wu DD, Gao YR, Li T, Wang DY, Lu D, Liu
SY, Hong Y, Ning HB, Liu JP, Shang J, et al: PEST-containing
nuclear protein mediates the proliferation, migration, and invasion
of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR
signaling pathways. BMC Cancer. 18:4992018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kwon MJ and Nam TJ: A polysaccharide of
the marine alga Capsosiphon fulvescens induces apoptosis in AGS
gastric cancer cells via an IGF-IR-mediated PI3K/Akt pathway. Cell
Biol Int. 31:768–775. 2007. View Article : Google Scholar : PubMed/NCBI
|
51
|
Li D, Qu X, Hou K, Zhang Y, Dong Q, Teng
Y, Zhang J and Liu Y: PI3K/Akt is involved in bufalin-induced
apoptosis in gastric cancer cells. Anticancer Drugs. 20:59–64.
2009. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lukoseviciene V, Tikuisis R, Dulskas A,
Miliauskas P and Ostapenko V: Surgery for triple-negative breast
cancer-does the type of anaesthesia have an influence on oxidative
stress, inflammation, molecular regulators, and outcomes of
disease? J BUON. 23:290–295. 2018.PubMed/NCBI
|
53
|
Wei X, Liu M, Ding Y, Li Q, Cheng C, Zong
X, Yin W, Chen J and Gu W: Setup errors and effectiveness of
Optical Laser 3D Surface imaging system (Sentinel) in postoperative
radiotherapy of breast cancer. Sci Rep. 8:72702018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wang Y, Xu H, Liu T, Huang M, Butter PP,
Li C, Zhang L, Kao GD, Gong Y, Maity A, et al: Temporal DNA-PK
activation drives genomic instability and therapy resistance in
glioma stem cells. JCI Insight. 3:pii: 98096. 2018. View Article : Google Scholar
|
55
|
Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu
Y, Yao Y and Li D: The epithelial to mesenchymal transition (EMT)
and cancer stem cells: Implication for treatment resistance in
pancreatic cancer. Mol Cancer. 16:522017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Tang X, Hu YJ, Ju WT, Fu Y, Sun WW, Liu Y,
Tan YR, Wang LZ, Li J, Tu YY, et al: Elevated growth
differentiating factor 15 expression predicts long-term benefit of
docetaxel, cisplatin and 5-fluorouracil induction chemotherapy in
patients with oral cancer. Oncol Lett. 15:8118–8124.
2018.PubMed/NCBI
|
57
|
Uitterhoeve AL, Koolen MG, van Os RM,
Koedooder K, van de Kar M, Pieters BR and Koning CC: Accelerated
high-dose radiotherapy alone or combined with either concomitant or
sequential chemotherapy; treatments of choice in patients with
non-small cell lung cancer. Radiat Oncol. 2:272007. View Article : Google Scholar : PubMed/NCBI
|