1
|
Pagano G and Youssoufian H: Fanconi
anaemia proteins: Major roles in cell protection against oxidative
damage. Bioessays. 25:589–595. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pace P, Johnson M, Tan WM, Mosedale G, Sng
C, Hoatlin M, de Winter J, Joenje H, Gergely F and Patel KJ: FANCE:
The link between Fanconi anaemia complex assembly and activity.
EMBO J. 21:3414–3423. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kalb R, Neveling K, Nanda I, Schindler D
and Hoehn H: Fanconi anemia: Causes and consequences of genetic
instability. Genome Dyn. 1:218–242. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bagby GC Jr: Genetic basis of Fanconi
anemia. Curr Opin Hemato. 10:68–76. 2003. View Article : Google Scholar
|
5
|
de Winter JP and Joenje H: The genetic and
molecular basis of Fanconi anemia. Mutat Res. 668:11–19. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Mathew CG: Fanconi anaemia genes and
susceptibility to cancer. Oncogene. 25:5875–5884. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Elder DA, D'Alessio DA, Eyal O, Mueller R,
Smith FO, Kansra AR and Rose SR: Abnormalities in glucose tolerance
are common in children with fanconi anemia and associated with
impaired insulin secretion. Pediatr Blood Cancer. 51:256–260. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Swift M, Sholman L and Gilmour D: Diabetes
mellitus and the gene for Fanconi's anemia. Science. 178:308–310.
1972. View Article : Google Scholar : PubMed/NCBI
|
9
|
Giri N, Batista DL, Alter BP and Stratakis
CA: Endocrine abnormalities in patients with Fanconi anemia. J Clin
Endocrinol Metab. 92:2624–2631. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Youssoufian H: Localization of Fanconi
anemia C protein to the cytoplasm of mammalian cells. Proc Natl
Acad Sci USA. 91:7975–7979. 1994. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lackinger D, Ruppitsch W, Ramirez MH,
Hirsch-Kauffmann M and Schweiger M: Involvement of the Fanconi
anemia protein FA-C in repair processes of oxidative DNA damages.
FEBS Lett. 440:103–106. 1998. View Article : Google Scholar : PubMed/NCBI
|
12
|
Youssoufian H: Cytoplasmic localization of
FAC is essential for the correction of a prerepair defect in
Fanconi anemia group C cells. J Clin Inves. 97:2003–2010. 1996.
View Article : Google Scholar
|
13
|
Cumming RC, Liu JM, Youssoufian H and
Buchwald M: Suppression of apoptosis in hematopoietic
factor-dependent progenitor cell lines by expression of the FAC
gene. Blood. 88:4558–4567. 1996.PubMed/NCBI
|
14
|
Hadjur S, Ung K, Wadsworth L, Dimmick J,
Rajcan-Separovic E, Scott RW, Buchwald M and Jirik FR: Defective
hematopoiesis and hepatic steatosis in mice with combined
deficiencies of the genes encoding Fancc and Cu/Zn superoxide
dismutase. Blood. 98:1003–1011. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Saadatzadeh MR, Bijangi-Vishehsaraei K,
Hong P, Bergmann H and Haneline LS: Oxidant hypersensitivity of
Fanconi anemia type C-deficient cells is dependent on a
redox-regulated apoptotic pathway. J Biol Chem. 279:16805–16812.
2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Rathbun RK, Faulkner GR, Ostroski MH,
Christianson TA, Hughes G, Jones G, Cahn R, Maziarz R, Royle G,
Keeble W, et al: Inactivation of the Fanconi anemia group C gene
augments interferon-gamma-induced apoptotic responses in
hematopoietic cells. Blood. 90:974–985. 1997.PubMed/NCBI
|
17
|
Cumming RC, Lightfoot J, Beard K,
Youssoufian H, O'Brien PJ and Buchwald M: Fanconi anemia group C
protein prevents apoptosis in hematopoietic cells through redox
regulation of GSTP1. Nat Med. 7:814–820. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kruyt FA, Hoshino T, Liu JM, Joseph P,
Jaiswal AK and Youssoufian H: Abnormal microsomal detoxification
implicated in Fanconi anemia group C by interaction of the FAC
protein with NADPH cytochrome P450 reductase. Blood. 92:3050–3056.
1998.PubMed/NCBI
|
19
|
Pinkus R, Weiner LM and Daniel V: Role of
quinone-mediated generation of hydroxyl radicals in the induction
of glutathione S-transferase gene expression. Biochemistry.
34:81–88. 1995. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang J, Otsuki T, Youssoufian H, Foe JL,
Kim S, Devetten M, Yu J, Li Y, Dunn D and Liu JM: Overexpression of
the fanconi anemia group C gene (FAC) protects hematopoietic
progenitors from death induced by Fas-mediated apoptosis. Cancer
Res. 58:3538–3541. 1998.PubMed/NCBI
|
21
|
Huang F, Ben Aissa M, Magron A, Huard CC,
Godin C, Lévesque G and Carreau M: The Fanconi anemia group C
protein interacts with uncoordinated 5A and delays apoptosis. PLoS
One. 9:e928112014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rains JL and Jain SK: Oxidative stress,
insulin signaling, and diabetes. Free Radic Biol Med. 50:567–575.
2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bloch-Damti A and Bashan N: Proposed
mechanisms for the induction of insulin resistance by oxidative
stress. Antioxid Redox Signal. 7:1553–1567. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li J, Sipple J, Maynard S, Mehta PA, Rose
SR, Davies SM and Pang Q: Fanconi anemia links reactive oxygen
species to insulin resistance and obesity. Antioxid Redox Signal.
17:1083–1098. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Robertson RP and Harmon JS: Pancreatic
islet beta-cell and oxidative stress: The importance of glutathione
peroxidase. FEBS Lett. 581:3743–3748. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Vasu S, McClenaghan NH, McCluskey JT and
Flatt PR: Cellular responses of novel human pancreatic β-cell line,
1.1B4 to hyperglycemia. Islets. 5:170–177. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Floros KV, Thomadaki H, Florou D, Talieri
M and Scorilas A: Alterations in mRNA expression of
apoptosis-related genes BCL2, BAX, FAS, caspase-3, and the novel
member BCL2L12 after treatment of human leukemic cell line HL60
with the antineoplastic agent etoposide. Ann N Y Acad Sci.
1090:89–97. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhou Y, Li W, Xu Q and Huang Y: Elevated
expression of Dickkopf-1 increases the sensitivity of human glioma
cell line SHG44 to BCNU. J Exp Clin Cancer Res. 29:1312010.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Niida A, Hiroko T, Kasai M, Furukawa Y,
Nakamura Y, Suzuki Y, Sugano S and Akiyama T: DKK1, a negative
regulator of Wnt signaling, is a target of the beta-catenin/TCF
pathway. Oncogene. 23:8520–8526. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tiedge M, Lortz S, Drinkgern J and Lenzen
S: Relation between antioxidant enzyme gene expression and
antioxidative defense status of insulin-producing cells. Diabetes.
46:1733–1742. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Keane KN, Cruzat VF, Carlessi R, de
Bittencourt PI Jr and Newsholme P: Molecular events linking
oxidative stress and inflammation to insulin resistance and β-cell
dysfunction. Oxid Med Cell Longev. 2015:1816432015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Maechler P, Jornot L and Wollheim CB:
Hydrogen peroxide alters mitochondrial activation and insulin
secretion in pancreatic beta cells. J Biol Chem. 274:27905–27913.
1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zraika S, Aston-Mourney K, Laybutt DR,
Kebede M, Dunlop ME, Proietto J and Andrikopoulos S: The influence
of genetic background on the induction of oxidative stress and
impaired insulin secretion in mouse islets. Diabetologia.
49:1254–1263. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bijangi-Vishehsaraei K, Saadatzadeh MR,
Werne A, McKenzie KA, Kapur R, Ichijo H and Haneline LS: Enhanced
TNF-alpha-induced apoptosis in Fanconi anemia type C-deficient
cells is dependent on apoptosis signal-regulating kinase 1. Blood.
106:4124–4130. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang X, Sejas DP, Qiu Y, Williams DA and
Pang Q: Inflammatory ROS promote and cooperate with the Fanconi
anemia mutation for hematopoietic senescence. J Cell Sci.
120:1572–1583. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang QG, Wang R, Khan M, Mahesh V and
Brann DW: Role of Dickkopf-1, an antagonist of the Wnt/beta-catenin
signaling pathway, in estrogen-induced neuroprotection and
attenuation of tau phosphorylation. J Neurosci. 28:8430–8441. 2008.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Gui S, Yuan G, Wang L, Zhou L, Xue Y, Yu
Y, Zhang J, Zhang M, Yang Y and Wang DW: Wnt3a regulates
proliferation, apoptosis and function of pancreatic NIT-1 beta
cells via activation of IRS2/PI3K signaling. J Cell Biochem.
114:1488–1497. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Huard CC, Tremblay CS, Helsper K, Delisle
MC, Schindler D, Lévesque G and Carreau M: Fanconi anemia proteins
interact with CtBP1 and modulate the expression of the Wnt
antagonist Dickkopf-1. Blood. 121:1729–1739. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Huard CC, Tremblay CS, Magron A, Lévesque
G and Carreau M: The Fanconi anemia pathway has a dual function in
Dickkopf-1 transcriptional repression. Proc Natl Acad Sci USA.
111:2152–2157. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gloyn AL, Odili S, Buettger C, Njolstad
PR, Shiota C, Matschinsky FM and Magnuson MA: Glucokinase and
Glycemic Disease: From Basics to Novel Therapeutics. 16. Karger;
Basel: pp. 92–109. 2004
|
42
|
Vasu S, McClenaghan NH and Flatt PR:
Molecular mechanisms of toxicity and cell damage by chemicals in a
human pancreatic beta cell line, 1.1B4. Pancreas. 45:1320–1329.
2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Iype T, Francis J, Garmey JC, Schisler JC,
Nesher R, Weir GC, Becker TC, Newgard CB, Griffen SC and Mirmira
RG: Mechanism of insulin gene regulation by the pancreatic
transcription factor Pdx-1: Application of pre-mRNA analysis and
chromatin immunoprecipitation to assess formation of functional
transcriptional complexes. J Biol Chem. 280:16798–16807. 2005.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang C, Moriguchi T, Kajihara M, Esaki R,
Harada A, Shimohata H, Oishi H, Hamada M, Morito N, Hasegawa K, et
al: MafA is a key regulator of glucose-stimulated insulin
secretion. Mol Cell Biol. 25:4969–4976. 2005. View Article : Google Scholar : PubMed/NCBI
|