1
|
Zheng S and Cai S: Colorectal cancer
epidemiology and prevention study in China. Chinese-German J
Clinical Oncol. 2:72–75. 2003. View Article : Google Scholar
|
2
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J,
Murray T and Thun MJ: Cancer statistics, 2008. CA Cancer J Clin.
58:71–96. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dusek L, Muzik J, Kubasek M, Koptikova J,
Zaloudik J and Vyzula R: Epidemiology of Malignant Tumours in the
Czech Republic. http://www.svod.czSeptember 12–2013
|
5
|
Krook JE, Moertel CG, Gunderson LL, Wieand
HS, Collins RT, Beart RW, Kubista TP, Poon MA, Meyers WC, Mailliard
JA, et al: Effective surgical adjuvant therapy for high-risk rectal
carcinoma. N Engl J Med. 324:709–715. 1991. View Article : Google Scholar : PubMed/NCBI
|
6
|
Valentini V, Aristei C, Glimelius B,
Minsky BD, Beets-Tan R, Borras JM, Haustermans K, Maingon P,
Overgaard J, Pahlman L, et al: Multidisciplinary rectal cancer
management: 2nd european rectal cancer consensus conference
(EURECA-CC2). Radiother Oncol. 92:148–163. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gérard JP, Conroy T, Bonnetain F, Bouché
O, Chapet O, Closon-Dejardin MT, Untereiner M, Leduc B, Francois E,
Maurel J, et al: Preoperative radiotherapy with or without
concurrent fluorouracil and leucovorin in T3-4 rectal cancers:
Results of FFCD 9203. J Clin Oncol. 24:4620–4625. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Engels B, Gevaert T, Sermeus A and Ridder
MD: Current status of intensified neo-adjuvant systemic therapy in
locally advanced rectal cancer. Front Oncol. 2:472012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mandard AM, Dalibard F, Mandard JC, Marnay
J, Henry-Amar M, Petiot JF, Roussel A, Jacob JH, Segol P, Samama G,
et al: Pathologic assessment of tumor regression after preoperative
chemoradiotherapy of esophageal carcinoma. Clinicopathologic
correlations. Cancer. 73:2680–2686. 1994. View Article : Google Scholar : PubMed/NCBI
|
10
|
Martin ST, Heneghan HM and Winter DC:
Systematic review and meta-analysis of outcomes following
pathological complete response to neoadjuvant chemoradiotherapy for
rectal cancer. Br J Surg. 99:918–928. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Suárez J, Vera R, Balén E, Gómez M, Arias
F, Lera JM, Herrera J and Zazpe C: Pathologic response assessed by
Mandard grade is a better prognostic factor than down staging for
disease-free survival after preoperative radiochemotherapy for
advanced rectal cancer. Colorectal Dis. 10:563–568. 2008.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Azizian A, Gruber J, Ghadimi BM and
Gaedcke J: MicroRNA in rectal cancer. World J Gastrointest Oncol.
8:416–426. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Svoboda M, Sana J, Fabian P, Kocakova I,
Gombosova J, Nekvindova J, Radova L, Vyzula R and Slaby O: MicroRNA
expression profile associated with response to neoadjuvant
chemoradiotherapy in locally advanced rectal cancer patients.
Radiat Oncol. 7:1952012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Drebber U, Lay M, Wedemeyer I, Vallböhmer
D, Bollschweiler E, Brabender J, Mönig SP, Hölscher AH, Dienes HP
and Odenthal M: Altered levels of the onco-microRNA 21 and the
tumor-supressor microRNAs 143 and 145 in advanced rectal cancer
indicate successful neoadjuvant chemoradiotherapy. Int J Oncol.
39:409–415. 2011.PubMed/NCBI
|
15
|
Kheirelseid EA, Miller N, Chang KH, Curran
C, Hennessey E, Sheehan M, Newell J, Lemetre C, Balls G and Kerin
MJ: miRNA expressions in rectal cancer as predictors of response to
neoadjuvant chemoradiation therapy. Int J Colorectal Dis.
28:247–260. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lopes-Ramos CM, Habr-Gama A, Bde Quevedo
S, Felício NM, Bettoni F, Koyama FC, Asprino PF, Galante PA,
Gama-Rodrigues J, Camargo AA, et al: Overexpression of miR-21-5p as
a predictive marker for complete tumor regression to neoadjuvant
chemoradiotherapy in rectal cancer patients. BMC Med Genomics.
7:682014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Della Vittoria Scarpati G, Falcetta F,
Carlomagno C, Ubezio P, Marchini S, De Stefano A, Singh VK,
D'Incalci M, De Placido S and Pepe S: A Specific miRNA signature
correlates with complete pathological response to neoadjuvant
chemoradiotherapy in locally advanced rectal cancer. Int J Radiat
Oncol Biol Phys. 83:1113–1119. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Smyth BGK: Limma: Linear models for
microarray dataBioinformatics and Computational Biology Solutions
Using R and Bioconductor. Springer; pp. 397–420. 2005, View Article : Google Scholar
|
19
|
Griffiths-Jones S: miRBase: The microRNA
sequence database. Methods Mol Biol. 342:129–138. 2006.PubMed/NCBI
|
20
|
Griffiths-Jones S: miRBase: microRNA
sequences and annotation. Curr Protoc Bioinformatics.
29:12.9.1–12.9.10. 2010.
|
21
|
Dweep H and Gretz N: miRWalk2.0: A
comprehensive atlas of microRNA-target interactions. Nat Methods.
12:6972015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Maqbool A, Lattke M, Wirth T and Baumann
B: Sustained, neuron-specific IKK/NF-κB activation generates a
selective neuroinflammatory response promoting local
neurodegeneration with aging. Mol Neurodegener. 8:402013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kohl M, Wiese S and Warscheid B:
Cytoscape: Software for visualization and analysis of biological
networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Davis AP, Grondin CJ, Lennonhopkins K,
Saraceni-Richards C, Sciaky D, King BL, Wiegers TC and Mattingly
CJ: The Comparative Toxicogenomics Database's 10th year
anniversary: Update 2015. Nucleic Acids Res. 43:(Database issue).
D914–D920. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Semenza GL: HIF-1 and mechanisms of
hypoxia sensing. Curr Opin Cell Biol. 13:167–171. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jaakkola P, Mole DR, Tian YM, Wilson MI,
Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji
M, Schofield CJ, et al: Targeting of HIF-alpha to the von
Hippel-Lindau ubiquitylation complex by O2-regulated prolyl
hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fang L, Zhang HB, Li H, Fu Y and Yang GS:
miR-548c-5p inhibits proliferation and migration and promotes
apoptosis in CD90(+) HepG2 cells. Radiol Oncol. 46:233–241.
2015.
|
29
|
Mandal P, Bhattacharjee B, Das Ghosh D,
Mondal NR, Chowdhury Roy R, Roy S and Sengupta S: Differential
expression of HPV16 L2 gene in cervical cancers harboring episomal
HPV16 genomes: Influence of synonymous and non-coding region
variations. PLoS One. 8:e656472013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Knüpfer H and Preiss R: Serum
interleukin-6 levels in colorectal cancer patients-a summary of
published results. Int J Colorectal Dis. 25:135–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Waldner MJ, Foersch S and Neurath MF:
Interleukin-6-A Key regulator of colorectal cancer development. Int
J Biol Sci. 8:1248–1253. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kilpivaara O, Laiho P, Aaltonen LA and
Nevanlinna H: CHEK2 1100delC and colorectal cancer. J Med Genet.
40:e1102003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Meijers-Heijboer H, Wijnen J, Vasen H,
Wasielewski M, Wagner A, Hollestelle A, Elstrodt F, van den Bos R,
de Snoo A, Fat GT, et al: The CHEK2 1100delC mutation identifies
families with a hereditary breast and colorectal cancer phenotype.
Am J Hum Genet. 72:1308–1314. 2003. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Kilpivaara O, Alhopuro P, Vahteristo P,
Aaltonen LA and Nevanlinna H: CHEK2 I157T associates with familial
and sporadic colorectal cancer. J Med Genet. 43:e342006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hofstädter F, Knüchel R and Rüschoff J:
Cell proliferation assessment in oncology. Virchows Arch.
427:323–341. 1995. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dalerba P, Kalisky T, Sahoo D, Rajendran
PS, Rothenberg ME, Leyrat AA, Sim S, Okamoto J, Johnston DM, Qian
D, et al: Single-cell dissection of transcriptional heterogeneity
in human colon tumors. Nat Biotechnol. 29:1120–1127. 2011.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Rau B, Sturm I, Lage H, Berger S,
Schneider U, Hauptmann S, Wust P, Riess H, Schlag PM, Dörken B and
Daniel PT: Dynamic Expression Profile of p21WAF1/CIP1 and Ki-67
predicts survival in rectal carcinoma treated with preoperative
radiochemotherapy. J Clin Onco. 21:3391–3401. 2003. View Article : Google Scholar
|
38
|
Kim NK, Park JK, Lee KY, Yang WI, Yun SH,
Sung J and Min JS: p53, BCL-2, and Ki-67 expression according to
tumor response after concurrent chemoradiotherapy for advanced
rectal cancer. Ann Surg Oncol. 8:418–424. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kinzler KW, Nilbert MC, Vogelstein B,
Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hamilton SR, Hedge P,
Markham A, et al: Identification of a gene located at chromosome
5q21 that is mutated in colorectal cancers. Science. 251:1366–1370.
1991. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cawkwell L, Lewis FA and Quirke P:
Frequency of allele loss of DCC, p53, RBI, WT1, NF1, NM23 and
APC/MCC in colorectal cancer assayed by fluorescent multiplex
polymerase chain reaction. Br J Cancer. 70:813–818. 1994.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Kong D, Li Y, Wang Z and Sarkar FH: Cancer
stem cells and epithelial-to-mesenchymal transition
(EMT)-phenotypic cells: Are they cousins or twins? Cancers (Basel).
3:716–729. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Aberle H, Bauer A, Stappert J, Kispert A
and Kemler R: beta-catenin is a target for the ubiquitin-
proteasome pathway. EMBO J. 16:3797–3804. 1997. View Article : Google Scholar : PubMed/NCBI
|
43
|
Morin PJ, Sparks AB, Korinek V, Barker N,
Clevers H, Vogelstein B and Kinzler KW: Activation of
beta-catenin-Tcf signaling in colon cancer by mutations in
beta-catenin or APC. Science. 275:1787–1790. 1997. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhu L, Chen H, Zhou D, Li D, Bai R, Zheng
S and Ge W: MicroRNA-9 up-regulation is involved in colorectal
cancer metastasis via promoting cell motility. Med Oncol.
29:1037–1043. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Schmalhofer O, Brabletz S and Brabletz T:
E-cadherin, beta-catenin, and ZEB1 in malignant progression of
cancer. Cancer Metastasis Rev. 28:151–166. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Munemitsu S, Albert I, Souza B, Rubinfeld
B and Polakis P: Regulation of intracellular beta-catenin levels by
the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc
Natl Acad Sci USA. 92:3046–3050. 1995. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gul IS, Hulpiau P, Saeys Y and Van RF:
Evolution and diversity of cadherins and catenins. Exp Cell Res.
358:3–9. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Peng RQ, Chen YB, Ding Y, Zhang R, Zhang
X, Yu XJ, Zhou ZW, Zeng YX and Zhang XS: Expression of calreticulin
is associated with infiltration of T-cells in stage IIIB colon
cancer. World J Gastroenterol. 16:2428–2434. 2010. View Article : Google Scholar : PubMed/NCBI
|