1
|
Caetano-Lopes J, Canhão H and Fonseca JE:
Osteoblasts and bone formation. Acta Reumatol Port. 32:103–110.
2007.PubMed/NCBI
|
2
|
Hadjidakis D and Androulakis II: Bone
remodeling. Ann N Y Acad Sci. 1092:385–396. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ruff CB, Garofalo E and Holmes MA:
Interpreting skeletal growth in the past from a functional and
physiological perspective. Am J Phys Anthropol. 150:29–37. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Gowri AM, Kavitha G, Rajasundari M,
Fathima SM, Kumar TM and Raj GD: Foetal stem cell derivation &
characterization for osteogenic lineage. Indian J Med Res.
137:308–315. 2013.PubMed/NCBI
|
5
|
Gronthos S, Chen S, Wang CY, Robey PG and
Shi S: Telomerase accelerates osteogenesis of bone marrow stromal
stem cells by upregulation of CBFA1, osterix, and osteocalcin. J
Bone Miner Res. 18:716–722. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rajamannan NM: Oxidative-mechanical stress
signals stem cell niche mediated Lrp5 osteogenesis in eNOS(−/−)
null mice. J Cell Biochem. 113:1623–1634. 2012.PubMed/NCBI
|
7
|
Wang F, Yin P, Lu Y, Zhou Z, Jiang C, Liu
Y and Yu X: Cordycepin prevents oxidative stress-induced inhibition
of osteogenesis. Oncotarget. 6:35496–35508. 2015.PubMed/NCBI
|
8
|
Wang N, Wang F, Gao Y, Yin P, Pan C, Liu
W, Zhou Z and Wang J: Curcumin protects human adipose-derived
mesenchymal stem cells against oxidative stress-induced inhibition
of osteogenesis. J Pharmacol Sci. 132:192–200. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Galetz MC, Fleischmann EW, Konrad CH,
Schuetz A and Glatzel U: Abrasion resistance of oxidized zirconium
in comparison with CoCrMo and titanium nitride coatings for
artificial knee joints. J Biomed Mater Res B Appl Biomater.
93:244–251. 2010.PubMed/NCBI
|
10
|
Grübl A, Chiari C, Gruber M, Kaider A and
Gottsauner-Wolf F: Cementless total hip arthroplasty with a
tapered, rectangular titanium stem and a threaded cup: A minimum
ten-year follow-up. J Bone Joint Surg Am. 84-A:425–431. 2002.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Lombardi AV Jr, Mallory TH, Vaughn BK and
Drouillard P: Aseptic loosening in total hip arthroplasty secondary
to osteolysis induced by wear debris from titanium-alloy modular
femoral heads. J Bone Joint Surg Am. 71:1337–1342. 1989. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang ML, Nesti LJ, Tuli R, Lazatin J,
Danielson KG, Sharkey PF and Tuan RS: Titanium particles suppress
expression of osteoblastic phenotype in human mesenchymal stem
cells. J Orthop Res. 20:1175–1184. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang ML, Tuli R, Manner PA, Sharkey PF,
Hall DJ and Tuan RS: Direct and indirect induction of apoptosis in
human mesenchymal stem cells in response to titanium particles. J
Orthop Res. 21:697–707. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zreiqat H, Crotti TN, Howlett CR, Capone
M, Markovic B and Haynes DR: Prosthetic particles modify the
expression of bone-related proteins by human osteoblastic cells in
vitro. Biomaterials. 24:337–346. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
O'Connor DT, Choi MG, Kwon SY and Sung
Paul KL: New insight into the mechanism of hip prosthesis
loosening: Effect of titanium debris size on osteoblast function. J
Orthop Res. 22:229–236. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chenard KE, Teven CM, He TC and Reid RR:
Bone morphogenetic proteins in craniofacial surgery: Current
techniques, clinical experiences, and the future of personalized
stem cell therapy. J Biomed Biotechnol. 2012:6015492012. View Article : Google Scholar : PubMed/NCBI
|
17
|
De Caestecker M and Meyrick B: Bone
morphogenetic proteins, genetics and the pathophysiology of primary
pulmonary hypertension. Respir Res. 2:193–197. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Axelrad TW and Einhorn TA: Bone
morphogenetic proteins in orthopaedic surgery. Cytokine Growth
Factor Rev. 20:481–488. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Conidi A, Cazzola S, Beets K, Coddens K,
Collart C, Cornelis F, Cox L, Joke D, Dobreva MP, Dries R, et al:
Few Smad proteins and many Smad-interacting proteins yield multiple
functions and action modes in TGFβ/BMP signaling in vivo. Cytokine
Growth Factor Rev. 22:287–300. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Simic P and Vukicevic S: Bone
morphogenetic proteins: From developmental signals to tissue
regeneration. Conference on bone morphogenetic proteins. EMBO Rep.
8:327–331. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Matsubara T, Kida K, Yamaguchi A, Hata K,
Ichida F, Meguro H, Aburatani H, Nishimura R and Yoneda T: BMP2
regulates Osterix through Msx2 and Runx2 during osteoblast
differentiation. J Biol Chem. 283:29119–29125. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nishimura R, Hata K, Matsubara T,
Wakabayashi M and Yoneda T: Regulation of bone and cartilage
development by network between BMP signalling and transcription
factors. J Biochem. 151:247–254. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Derynck R and Zhang YE: Smad-dependent and
Smad-independent pathways in TGF-beta family signalling. Nature.
425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Komori T: Regulation of osteoblast
differentiation by Runx2. Adv Exp Med Biol. 658:43–49. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Saito T, Ogawa M, Hata Y and Bessho K:
Acceleration effect of human recombinant bone morphogenetic
protein-2 on differentiation of human pulp cells into odontoblasts.
J Endod. 30:205–208. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chang LM, Yun HS, Kim YS and Ahn JW:
Aucubin: Potential antidote for alpha-amanitin poisoning. J Toxicol
Clin Toxicol. 22:77–85. 1984. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li Y, Sato T, Metori K, Koike K, Che QM
and Takahashi S: The promoting effects of geniposidic acid and
aucubin in Eucommia ulmoides Oliver leaves on collagen synthesis.
Biol Pharm Bull. 21:1306–1310. 1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chang IM: Liver-protective activities of
aucubin derived from traditional oriental medicine. Res Commun Mol
Pathol Pharmacol. 102:189–204. 1998.PubMed/NCBI
|
29
|
Chang IM, Ryu JC, Park YC, Yun HS and Yang
KH: Protective activities of aucubin against carbon
tetrachloride-induced liver damage in mice. Drug Chem Toxicol.
6:443–453. 1983. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jin L, Xue HY, Jin LJ, Li SY and Xu YP:
Antioxidant and pancreas-protective effect of aucubin on rats with
streptozotocin-induced diabetes. Eur J Pharmacol. 582:162–167.
2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xue HY, Gao GZ, Lin QY, Jin LJ and Xu YP:
Protective effects of aucubin on H2O2-induced apoptosis in PC12
cells. Phytother Res. 26:369–374. 2012.PubMed/NCBI
|
32
|
Xue H, Jin L, Jin L, Zhang P, Li D, Xia Y,
Lu Y and Xu Y: Neuroprotection of aucubin in primary diabetic
encephalopathy. Sci China C Life Sci. 51:495–502. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ha H, Ho J, Shin S, Kim H, Koo S, Kim IH
and Kim C: Effects of Eucommiae Cortex on osteoblast-like cell
proliferation and osteoclast inhibition. Arch Pharm Res.
26:929–936. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sudo H, Kodama HA, Amagai Y, Yamamoto S
and Kasai S: In vitro differentiation and calcification in a new
clonal osteogenic cell line derived from newborn mouse calvaria. J
Cell Biol. 96:191–198. 1983. View Article : Google Scholar : PubMed/NCBI
|
35
|
Czekanska EM, Stoddart MJ, Richards RG and
Hayes JS: In search of an osteoblast cell model for in vitro
research. Eur Cell Mater. 24:1–17. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen G, Deng C and Li YP: TGF-β and BMP
signaling in osteoblast differentiation and bone formation. Int J
Biol Sci. 8:272–288. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Aubin JE and Turksen K: Monoclonal
antibodies as tools for studying the osteoblast lineage. Microsc
Res Tech. 33:128–140. 1996. View Article : Google Scholar : PubMed/NCBI
|
38
|
Matsumoto A: The effect of cell
environment on osteoblastic function. Nihon Yakurigaku Zasshi.
105:273–283. 1995.(In Japanese). View Article : Google Scholar : PubMed/NCBI
|
39
|
Lin J, Fan YJ, Mehl C, Zhu JJ, Chen H, Jin
LY, Xu JH and Wang HM: Eucommia ulmoides Oliv. antagonizes
H2O2-induced rat osteoblastic MC3T3-E1 apoptosis by inhibiting
expressions of caspases 3, 6, 7, and 9. J Zhejiang Univ Sci B.
12:47–54. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Akopova OV, Kolchinskaya LI, Nosar VI,
Bouryi VA, Mankovska IN and Sagach VF: Cytochrome C as an amplifier
of ROS release in mitochondria. Fiziol Zh. 58:3–12. 2012.
|
41
|
Marchi S, Giorgi C, Suski JM, Agnoletto C,
Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti
F, et al: Mitochondria-ros crosstalk in the control of cell death
and aging. J Signal Transduct. 2012:3296352012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cadenas E and Davies KJ: Mitochondrial
free radical generation, oxidative stress, and aging. Free Radic
Biol Med. 29:222–230. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Halliwell B and Gutteridge JM: Role of
free radicals and catalytic metal ions in human disease: An
overview. Methods Enzymol. 186:1–85. 1990. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lenaz G, Bovina C, Formiggini G and
Castelli Parenti G: Mitochondria, oxidative stress, and antioxidant
defences. Acta Biochim Pol. 46:1–21. 1999.PubMed/NCBI
|
45
|
Ho JN, Lee YH, Lee YD, Jun WJ, Kim HK,
Hong BS, Shin DH and Cho HY: Inhibitory effect of Aucubin isolated
from Eucommia ulmoides against UVB-induced matrix
metalloproteinase-1 production in human skin fibroblasts. Biosci
Biotechnol Biochem. 69:2227–2231. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ho JN, Lee YH, Park JS, Jun WJ, Kim HK,
Hong BS, Shin DH and Cho HY: Protective effects of aucubin isolated
from Eucommia ulmoides against UVB-induced oxidative stress in
human skin fibroblasts. Biol Pharm Bull. 28:1244–1248. 2005.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Park KW, Waki H, Kim WK, Davies BS, Young
SG, Parhami F and Tontonoz P: The small molecule phenamil induces
osteoblast differentiation and mineralization. Mol Cell Biol.
29:3905–3914. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Eliseev RA, Dong YF, Sampson E, Zuscik MJ,
Schwarz EM, O'Keefe RJ, Rosier RN and Drissi MH: Runx2-mediated
activation of the Bax gene increases osteosarcoma cell sensitivity
to apoptosis. Oncogene. 27:3605–3614. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Gaur T, Lengner CJ, Hovhannisyan H, Bhat
RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS
and Lian JB: Canonical WNT signaling promotes osteogenesis by
directly stimulating Runx2 gene expression. J Biol Chem.
280:33132–33140. 2005. View Article : Google Scholar : PubMed/NCBI
|