1
|
Douglass J, McKinzie AA and Couceyro P:
PCR differential display identifies a rat brain mRNA that is
transcriptionally regulated by cocaine and amphetamine. J Neurosci.
15:2471–2481. 1995. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wierup N, Kuhar M, Nilsson BO, Mulder H,
Ekblad E and Sundler F: Cocaine- and amphetamine-regulated
transcript (CART) is expressed in several islet cell types during
rat development. J Histochem Cytochem. 52:169–177. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rogge G, Jones D, Hubert GW, Lin Y and
Kuhar MJ: CART peptides: Regulators of body weight, reward and
other functions. Nat Rev Neurosci. 9:747–758. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wu B, Hu S, Yang M, Pan H and Zhu S: CART
peptide promotes the survival of hippocampal neurons by
upregulating brain-derived neurotrophic factor. Biochem Biophys Res
Commun. 347:656–661. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mao P, Ardeshiri A, Jacks R, Yang S, Hurn
PD and Alkayed NJ: Mitochondrial mechanism of neuroprotection by
CART. Eur J Neurosci. 26:624–632. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jia J, Chen X, Zhu W, Luo Y, Hua Z and Xu
Y: CART protects brain from damage through ERK activation in
ischemic stroke. Neuropeptides. 42:653–661. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Luo Y, Shen H, Liu HS, Yu SJ, Reiner DJ,
Harvey BK, Hoffer BJ, Yang Y and Wang Y: CART peptide induces
neuroregeneration in stroke rats. J Cereb Blood Flow Metab.
33:300–310. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hosp JA, Pekanovic A, Rioult-Pedotti MS
and Luft A: Dopaminergic projections from midbrain to primary motor
cortex mediate motor skill learning. J Neurosci. 31:2481–2487.
2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kawashima S, Ueki Y, Kato T, Matsukawa N,
Mima T, Hallett M, Ito K and Ojika K: Changes in striatal dopamine
release associated with human motor-skill acquisition. PLoS One.
7:e317282012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Calne DB and Sandler M: L-Dopa and
parkinsonism. Nature. 226:21–24. 1970. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Bhakta BB, Hartley S, Holloway I, Couzens
JA, Ford GA, Meads D, Sackley CM, Walker MF, Ruddock SP and Farrin
AJ: The DARS (Dopamine Augmented Rehabilitation in Stroke) trial:
protocol for a randomised controlled trial of Co-careldopa
treatment in addition to routine NHS occupational and physical
therapy after stroke. Trials. 15:3162014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Brannan T, Weinberger J, Knott P, Taff I,
Kaufmann H, Togasaki D, Nieves-Rosa J and Maker H: Direct evidence
of acute, massive striatal dopamine release in gerbils with
unilateral strokes. Stroke. 18:108–110. 1987. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shin SS, Bray ER, Zhang CQ and Dixon CE:
Traumatic brain injury reduces striatal tyrosine hydroxylase
activity and potassium-evoked dopamine release in rats. Brain Res.
1369:208–215. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Krysiak R, Kedzia A and Okopień B: The
effect of oxcarbamazepine on the clinical effectiveness of dopamine
agonists in the treatment of prolactinoma. Wiad Lek. 64:279–282.
2011.PubMed/NCBI
|
15
|
Ruscher K, Kuric E and Wieloch T: Levodopa
treatment improves functional recovery after experimental stroke.
Stroke. 43:507–513. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
PD Med Collaborative Group, . Gray R, Ives
N, Rick C, Patel S, Gray A, Jenkinson C, McIntosh E, Wheatley K,
Williams A and Clarke CE: Long-term effectiveness of dopamine
agonists and monoamine oxidase B inhibitors compared with levodopa
as initial treatment for Parkinson's disease (PD MED): A large,
open-label, pragmatic randomised trial. Lancet. 384:1196–1205.
2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sami MB and Faruqui R: The effectiveness
of dopamine agonists for treatment of neuropsychiatric symptoms
post brain injury and stroke. Acta Neuropsychiatr. 27:317–326.
2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao H, Cheng L, Liu Y, Zhang W, Maharjan
S, Cui Z, Wang X, Tang D and Nie L: Mechanisms of anti-inflammatory
property of conserved dopamine neurotrophic factor: Inhibition of
JNK signaling in lipopolysaccharide-induced microglia. J Mol
Neurosci. 52:186–192. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xu Y, Zhang W, Klaus J, Young J, Koerner
I, Sheldahl LC, Hurn PD, Martínez-Murillo F and Alkayed NJ: Role of
cocaine- and amphetamine-regulated transcript in estradiol-mediated
neuroprotection. Proc Natl Acad Sci USA. 103:14489–14494. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Qing K and Chen Y: Central CART gene
delivery by recombinant AAV vector attenuates body weight gain in
diet-induced-obese rats. Regul Pept. 140:21–26. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang M, Han L and Xu Y: Roles of cocaine-
and amphetamine-regulated transcript in the central nervous system.
Clin Exp Pharmacol Physiol. 39:586–592. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chang L, Chen Y, Li J, Liu Z, Wang Z, Chen
J, Cao W and Xu Y: Cocaine- and amphetamine-regulated transcript
modulates peripheral immunity and protects against brain injury in
experimental stroke. Brain Behav Immun. 25:260–269. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Szeto HH: Mitochondria-targeted peptide
antioxidants: Novel neuroprotective agents. AAPS J. 8:E521–E531.
2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Turrens JF: Mitochondrial formation of
reactive oxygen species. J Physiol. 552:335–344. 2003. View Article : Google Scholar : PubMed/NCBI
|