1
|
Du P, Wang HJ, Zhang B, Qi SF, Mi YJ, Liu
DW and Tian QB: Prevalence of abdominal obesity among Chinese
adults in 2011. J Epidemiol. 27:282–286. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Aranceta-Bartrina J, Pérez-Rodrigo C,
Alberdi-Aresti G, Ramos-Carrera N and Lázaro-Masedo S: Prevalence
of general obesity and abdominal obesity in the spanish adult
population (Aged 25–64 Years) 2014–2015: The ENPE study. Rev Esp
Cardiol (Engl Ed). 69:579–587. 2016.(In English, Spanish).
View Article : Google Scholar : PubMed/NCBI
|
3
|
Wong E, Woodward M, Stevenson C, Backholer
K, Sarink D and Peeters A: Prevalence of disability in Australian
elderly: Impact of trends in obesity and diabetes. Prev Med.
82:105–110. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Barbieri M, Désesquelles A, Egidi V,
Demuru E, Frova L, Meslé F and Pappagallo M: Obesity-related
mortality in France, Italy, and the United States: A comparison
using multiple cause-of-death analysis. Int J Public Health.
62:623–629. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jo J, Gavrilova O, Pack S, Jou W, Mullen
S, Sumner AE, Cushman SW and Periwal V: Hypertrophy and/or
hyperplasia: Dynamics of adipose tissue growth. PLoS Comput Biol.
5:e10003242009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee YS, Kim JW, Osborne O, Oh DY, Sasik R,
Schenk S, Chen A, Chung H, Murphy A, Watkins SM, et al: Increased
adipocyte O2 consumption triggers HIF-1α, causing inflammation and
insulin resistance in obesity. Cell. 157:1339–1352. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Fujisaka S, Usui I, Ikutani M, Aminuddin
A, Takikawa A, Tsuneyama K, Mahmood A, Goda N, Nagai Y and Takatsu
K: Adipose tissue hypoxia induces inflammatory M1 polarity of
macrophages in an HIF-1α-dependent and HIF-1α-independent manner in
obese mice. Diabetologia. 56:1403–1412. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shin E, Shin S, Kong H, Lee S, Do SG, Jo
TH, Park YI, Lee CK, Hwang IK and Kim K: Dietary aloe reduces
adipogenesis via the activation of AMPK and suppresses
obesity-related inflammation in obese mice. Immune Netw.
11:107–113. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Saltiel AR and Olefsky JM: Inflammatory
mechanisms linking obesity and metabolic disease. J Clin Invest.
127:1–4. 2017. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Esser N, Legrand-Poels S, Piette J, Scheen
AJ and Paquot N: Inflammation as a link between obesity, metabolic
syndrome and type 2 diabetes. Diabetes Res Clin Pract. 105:141–150.
2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lo J, Bernstein LE, Canavan B, Torriani M,
Jackson MB, Ahima RS and Grinspoon SK: Effects of TNF-alpha
neutralization on adipocytokines and skeletal muscle adiposity in
the metabolic syndrome. Am J Physiol Endocrinol Metab.
293:E102–E109. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Owyang AM, Maedler K, Gross L, Yin J,
Esposito L, Shu L, Jadhav J, Domsgen E, Bergemann J and Lee S: XOMA
052, an anti-IL-1{beta} monoclonal antibody, improves glucose
control and {beta}-cell function in the diet-induced obesity mouse
model. Endocrinology. 151:2515–2527. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rissanen A, Howard CP, Botha J and Thuren
T: Global Investigators: Effect of anti-IL-1β antibody
(canakinumab) on insulin secretion rates in impaired glucose
tolerance or type 2 diabetes: Results of a randomized,
placebo-controlled trial. Diabetes Obes Metab. 14:1088–1096. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Arner P and Kulyté A: MicroRNA regulatory
networks in human adipose tissue and obesity. Nat Rev Endocrinol.
11:276–288. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yao F, Yu Y, Feng L, Li J, Zhang M, Lan X,
Yan X, Liu Y, Guan F, Zhang M and Chen L: Adipogenic miR-27a in
adipose tissue upregulates macrophage activation via inhibiting
PPARγ of insulin resistance induced by high-fat diet-associated
obesity. Exp Cell Res. 355:105–112. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ying W, Riopel M, Bandyopadhyay G, Dong Y,
Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A,
Fu W, et al: Adipose tissue Macrophage-derived exosomal miRNAs can
modulate in vivo and in vitro insulin sensitivity. Cells.
171(372–384): e122017.
|
17
|
Zhang Y, Yu M, Dai M, Chen C, Tang Q, Jing
W, Wang H and Tian W: miR-450a-5p within rat adipose tissue
exosome-like vesicles promotes adipogenic differentiation by
targeting WISP2. J Cell Sci. 130:1158–1168. 2017.PubMed/NCBI
|
18
|
Zhang Y, Mei H, Chang X, Chen F, Zhu Y and
Han X: Adipocyte-derived microvesicles from obese mice induce M1
macrophage phenotype through secreted miR-155. J Mol Cell Biol.
8:505–517. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ferrante SC, Nadler EP, Pillai DK, Hubal
MJ, Wang Z, Wang JM, Gordish-Dressman H, Koeck E, Sevilla S, Wiles
AA and Freishtat RJ: Adipocyte-derived exosomal miRNAs: A novel
mechanism for obesity-related disease. Pediatr Res. 77:447–454.
2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Neeland IJ, Ayers CR, Rohatgi AK, Turer
AT, Berry JD, Das SR, Vega GL, Khera A, McGuire DK, Grundy SM and
de Lemos JA: Associations of visceral and abdominal subcutaneous
adipose tissue with markers of cardiac and metabolic risk in obese
adults. Obesity. 21:E439–E447. 2013.PubMed/NCBI
|
21
|
Niijima K, Shimoda Y, Saito T, Yamada E,
Niijima Y, Okada S and Yamada M: Subcutaneous abdominal adipose
tissue is associated with an index of insulin
sensitivity/resistance. Adipocyte. 5:375–377. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Goel K, Misra A, Vikram NK, Poddar P and
Gupta N: Subcutaneous abdominal adipose tissue is associated with
the metabolic syndrome in Asian Indians independent of
intra-abdominal and total body fat. Heart. 96:579–583. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Marinou K, Hodson L, Vasan SK, Fielding
BA, Banerjee R, Brismar K, Koutsilieris M, Clark A, Neville MJ and
Karpe F: Structural and functional properties of deep abdominal
subcutaneous adipose tissue explain its association with insulin
resistance and cardiovascular risk in men. Diabetes Care.
37:821–829. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tam CS, Heilbronn LK, Henegar C, Wong M,
Cowell CT, Cowley MJ, Kaplan W, Clément K and Baur LA: An early
inflammatory gene profile in visceral adipose tissue in children.
Int J Pediatr Obes. 6:e360–e363. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li M, Wen Y, Lu Q and Fu WJ: An imputation
approach for oligonucleotide microarrays. PLoS One. 8:e586772013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
R Core Team: R: a language and environment
for statistical computing. R Foundation for Statistical
ComputingThe R Foundation for Statistical Computing. Vienna,
Austria: 2011
|
27
|
Bolstad B: PreprocessCore: A collection of
pre-processing functions. R package. version 1. 2013.
|
28
|
Smyth GK: Limma: Linear models for
microarray dataBioinformatics and Computational Biology Solutions
Using R and Bioconductor. Gentleman R, Carey VJ, Huber W, Irizarry
RA and Dudoit S: Springer; New York, NY: pp. 397–420. 2005,
View Article : Google Scholar
|
29
|
Kolde R: (2015) pheatmap: Pretty Heatmaps.
R package. version 1.0. 8. 2015.
|
30
|
Dweep H and Gretz N: miRWalk2.0: A
comprehensive atlas of microRNA-target interactions. Nat Methods.
12:6972015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kohl M, Wiese S and Warscheid B:
Cytoscape: Software for visualization and analysis of biological
networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Huang DW, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Vohl MC, Sladek R, Robitaille J, Gurd S,
Marceau P, Richard D, Hudson TJ and Tchernof A: A survey of genes
differentially expressed in subcutaneous and visceral adipose
tissue in men. Obes Res. 12:1217–1222. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Romao JM, Jin W, He M, Mcallister T and
Guan LL: Altered MicroRNA expression in bovine subcutaneous and
visceral adipose tissues from cattle under different diet. PLoS
One. 7:e406052012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tapia PC: RhoA, Rho kinase, JAK2, and
STAT3 may be the intracellular determinants of longevity implicated
in the progeric influence of obesity: Insulin, IGF-1, and leptin
may all conspire to promote stem cell exhaustion. Med Hypotheses.
66:570–576. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Noda K, Nakajima S, Godo S, Saito H, Ikeda
S, Shimizu T, Enkhjargal B, Fukumoto Y, Tsukita S, Yamada T, et al:
Rho-kinase inhibition ameliorates metabolic disorders through
activation of AMPK pathway in mice. PLoS One. 9:e1104462014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Hara Y, Wakino S, Tanabe Y, Saito M,
Tokuyama H, Washida N, Tatematsu S, Yoshioka K, Homma K, Hasegawa
K, et al: Rho and Rho-kinase activity in adipocytes contributes to
a vicious cycle in obesity that may involve mechanical stretch. Sci
Signal. 4:ra32011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wu YL, Zhu YB, Huang RD, Peng XE and Lin
X: Multiple MicroRNAs ameliorate hepatocyte steatosis and injury by
suppressing FABP1 expression. Cell Physiol Biochem. 44:2243–2255.
2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Xia YF, Pei GH, Wang N, Che YC, Yu FS, Yin
FF, Liu HX, Luo B and Wang YK: miR-3156-3p is downregulated in
HPV-positive cervical cancer and performs as a tumor-suppressive
miRNA. Virol J. 14:202017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Moratin J, Hartmann S, Brands R, Brisam M,
Mutzbauer G, Scholz C, Seher A, Müller-Richter U, Kübler AC and
Linz C: Evaluation of miRNA-expression and clinical tumour
parameters in oral squamous cell carcinoma (OSCC). J
Craniomaxillofac Surg. 44:876–881. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sindhu S, Thomas R, Shihab PK, Al-Shawaf
E, Hasan A, Alghanim M, Behbehani K and Ahmad R: Changes in the
adipose tissue expression of CD86 costimulatory ligand and CD163
scavenger receptor in obesity and type-2 diabetes: Implication for
metabolic disease. J Glycomics Lipidomics. 5:1342015. View Article : Google Scholar
|
42
|
Ahmad R, Thomas R, Kochumon S and Sindhu
S: Increased adipose tissue expression of IL-18R and its ligand
IL-18 associates with inflammation and insulin resistance in
obesity. Immun Inflamm Dis. 5:318–335. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ahmad R, Kochumon S, Thomas R, Atizado V
and Sindhu S: Increased adipose tissue expression of TLR8 in obese
individuals with or without type-2 diabetes: Significance in
metabolic inflammation. J Inflamm. 13:382016. View Article : Google Scholar
|
44
|
Gomaa AM and El-Aziz EA: Vitamin D reduces
high-fat diet induced weight gain and C-reactive protein, increases
interleukin-10, and reduces CD86 and caspase-3. Pathophysiology.
24:31–37. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Baskin KK, Grueter CE, Kusminski CM,
Holland WL, Bookout AL, Satapati S, Kong YM, Burgess SC, Malloy CR,
Scherer PE, et al: MED13-dependent signaling from the heart confers
leanness by enhancing metabolism inadipose tissue and liver. EMBO
Mol Med. 6:1610–1621. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shao X, Chen S, Yang D, Cao M, Yao Y, Wu
Z, Li N, Shen N, Li X, Song X and Qian Y: FGF2 cooperates with
IL-17 to promote autoimmune inflammation. Sci Rep. 7:70242017.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Drosos I, Chalikias G, Pavlaki M, Kareli
D, Epitropou G, Bougioukas G, Mikroulis D, Konstantinou F,
Giatromanolaki A, Ritis K, et al: Differences between perivascular
adipose tissue surrounding the heart and the internal mammary
artery: Possible role for the leptin-inflammation-fibrosis-hypoxia
axis. Clin Res Cardiol. 105:887–900. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Li P, Ogino K, Hoshikawa Y, Morisaki H,
Toyama K, Morisaki T, Morikawa K, Ninomiya H, Yoshida A, Hashimoto
K, et al: AMP deaminase 3 plays a critical role in remote
reperfusion lung injury. Biochem Biophys Res Commun. 434:131–136.
2013. View Article : Google Scholar : PubMed/NCBI
|