1
|
Boutemine IM, Amri M, Amir ZC, Fitting C,
Mecherara-Idjeri S, Layaida K, Sennoun N, Berkane S, Cavaillon JM
and Touil-Boukoffa C: Gastro-protective, therapeutic and
anti-inflammatory activities of Pistacia lentiscus L. Fatty oil
against ethanol-induced gastric ulcers in rats. J Ethnopharmacol.
224:273–282. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chi YC, Lee SL, Lee YP, Lai CL and Yin SJ:
Modeling of human hepatic and gastrointestinal ethanol metabolism
with kinetic mechanism-based full rate equations of the component
alcohol dehydrogenase isozymes and allozymes. Chem Res Toxicol.
31:556–569. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
de Araujo ERD, Guerra GCB, Araujo DFS, de
Araujo AA, Fernandes JM, de Araujo Junior RF, da Silva VC, de
Carvalho TG, Ferreira LS and Zucolotto SM: Gastroprotective and
antioxidant activity of kalanchoe brasiliensis and kalanchoe
pinnata leaf juices against indomethacin and ethanol-induced
gastric lesions in rats. Int J Mol Sci. 19(pii): E12652018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Yang J, Zhou W, Gu Y, Dai J, Li X, Tai P,
Li Y, Ma X and Zhang Y: Protective effect of Pu-erh tea extracts
against ethanol-induced gastric mucosal damage in rats. Biomed Rep.
8:335–342. 2018.PubMed/NCBI
|
5
|
Chen H, Liao H, Liu Y, Zheng Y, Wu X and
Su Z, Zhang X, Lai Z, Lai X, Lin ZX and Su Z: Protective effects of
pogostone from Pogostemonis Herba against ethanol-induced gastric
ulcer in rats. Fitoterapia. 100:110–117. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gong J, Zhang Z, Zhang X, Chen F, Tan Y,
Li H, Jiang J and Zhang J: Effects and possible mechanisms of
Alpinia officinarum ethanol extract on indomethacin-induced gastric
injury in rats. Pharm Biol. 56:294–301. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Moris D, Spartalis M, Tzatzaki E,
Spartalis E, Karachaliou GS, Triantafyllis AS, Karaolanis GI,
Tsilimigras DI and Theocharis S: The role of reactive oxygen
species in myocardial redox signaling and regulation. Ann Transl
Med. 5:3242017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Slomiany A, Piotrowski E, Piotrowski J and
Slomiany BL: Impact of ethanol on innate protection of gastric
mucosal epithelial surfaces and the risk of injury. J Physiol
Pharmacol. 51:433–447. 2000.PubMed/NCBI
|
9
|
Shindo Y, Konagaya M, Harasawa S, Miwa T
and Osamura Y: The role of histamine in ethanol-induced gastric
mucosal injury in the rat. Tokai J Exp Clin Med. 22:59–64.
1997.PubMed/NCBI
|
10
|
Liu J, Wang J, Shi Y, Su W, Chen J, Zhang
Z, Wang G and Wang F: Short chain fatty acid acetate protects
against ethanol-induced acute gastric mucosal lesion in mice. Biol
Pharm Bull. 40:1439–1446. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang HJ, Kim MJ, Kwon DY, Kang ES, Kang S
and Park S: Gastroprotective actions of Taraxacum coreanum Nakai
water extracts in ethanol-induced rat models of acute and chronic
gastritis. J Ethnopharmacol. 208:84–93. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu W, Shang P, Liu T, Xu H, Ren D, Zhou
W, Wen A and Ding Y: Gastroprotective effects of chebulagic acid
against ethanol-induced gastric injury in rats. Chem Biol Interact.
278:1–8. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang Y, Yin B, Lv L, Wang Z, He J, Chen Z,
Wen X, Zhang Y, Sun W, Li Y and Zhao Y: Gastroprotective effect of
aucubin against ethanol-induced gastric mucosal injury in mice.
Life Sci. 189:44–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ilacqua AN, Shettler JA, Wernke KM, Skalla
JK and McQuade KJ: Theaflavins from black tea affect growth,
development, and motility in Dictyostelium discoideum. Biochem
Biophys Res Commun. 491:449–454. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pereira-Caro G, Moreno-Rojas JM, Brindani
N, Del Rio D, Lean MEJ, Hara Y and Crozier A: Bioavailability of
black tea theaflavins: Absorption, metabolism, and colonic
catabolism. J Agric Food Chem. 65:5365–5374. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Thakur VS, Gupta K and Gupta S: The
chemopreventive and chemotherapeutic potentials of tea polyphenols.
Curr Pharm Biotechnol. 13:191–199. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zaveri NT: Green tea and its polyphenolic
catechins: Medicinal uses in cancer and noncancer applications.
Life Sci. 78:2073–2080. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gao Y, Rankin GO, Tu Y and Chen YC:
Theaflavin-3,3′-digallate decreases human ovarian carcinoma OVCAR-3
cell-induced angiogenesis via Akt and Notch-1 pathways, not via
MAPK pathways. Int J Oncol. 48:281–292. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pan H, Wang F, Rankin GO, Rojanasakul Y,
Tu Y and Chen YC: Inhibitory effect of black tea pigments,
theaflavin3/3′-gallate against cisplatin-resistant ovarian cancer
cells by inducing apoptosis and G1 cell cycle arrest. Int J Oncol.
51:1508–1520. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sur S and Panda CK: Molecular aspects of
cancer chemopreventive and therapeutic efficacies of tea and tea
polyphenols. Nutrition 43–44. 1–15. 2017.
|
21
|
Yang CS, Wang X, Lu G and Picinich SC:
Cancer prevention by tea: Animal studies, molecular mechanisms and
human relevance. Nat Rev Cancer. 9:429–439. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kong L, Qi X, Huang S, Chen S, Wu Y and
Zhao L: Theaflavins inhibit pathogenic properties of P. Gingivalis
and MMPs production in P. Gingivalis-stimulated human gingival
fibroblasts. Arch Oral Biol. 60:12–22. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lombardo Bedran TB, Morin MP, Palomari
Spolidorio D and Grenier D: Black tea extract and its theaflavin
derivatives inhibit the growth of periodontopathogens and modulate
interleukin-8 and beta-defensin secretion in oral epithelial cells.
PLoS One. 10:e01431582015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Frei B and Higdon JV: Antioxidant activity
of tea polyphenols in vivo: Evidence from animal studies. J
Nutrition. 133:3275s–3284s. 2003. View Article : Google Scholar
|
25
|
Han X, Zhang J, Xue X, Zhao Y, Lu L, Cui
M, Miao W and Fan S: Theaflavin ameliorates ionizing
radiation-induced hematopoietic injury via the NRF2 pathway. Free
Radic Biol Med. 113:59–70. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chang H, Wang Y, Yin X, Liu X and Xuan H:
Ethanol extract of propolis and its constituent caffeic acid
phenethyl ester inhibit breast cancer cells proliferation in
inflammatory microenvironment by inhibiting TLR4 signal pathway and
inducing apoptosis and autophagy. BMC Complement Altern Med.
17:4712017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sims EK, Lakhter AJ, Anderson-Baucum E,
Kono T, Tong X and Evans-Molina C: MicroRNA 21 targets BCL2 mRNA to
increase apoptosis in rat and human beta cells. Diabetologia.
60:1057–1065. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang J, Cai S, Li J, Xiong L, Tian L, Liu
J, Huang J and Liu Z: Neuroprotective effects of theaflavins
against oxidative stress-induced apoptosis in PC12 cells. Neurochem
Res. 41:3364–3372. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Anandhan A, Essa MM and Manivasagam T:
Therapeutic attenuation of neuroinflammation and apoptosis by black
tea theaflavin in chronic MPTP/probenecid model of Parkinson's
disease. Neurotox Res. 23:166–173. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dong Z, Ma W, Huang C and Yang CS:
Inhibition of tumor promoter-induced activator protein 1 activation
and cell transformation by tea polyphenols, (−)-epigallocatechin
gallate, and theaflavins. Cancer Res. 57:4414–4419. 1997.PubMed/NCBI
|
31
|
Lu G, Liao J, Yang G, Reuhl KR, Hao X and
Yang CS: Inhibition of adenoma progression to adenocarcinoma in a
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung
tumorigenesis model in A/J mice by tea polyphenols and caffeine.
Cancer Res. 66:11494–11501. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Shao J, Meng Q and Li Y: Theaflavins
suppress tumor growth and metastasis via the blockage of the STAT3
pathway in hepatocellular carcinoma. Onco Targets Ther.
9:4265–4275. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ganguly S, G TK, Mantha S and Panda K:
Simultaneous determination of black tea-derived catechins and
theaflavins in tissues of tea consuming animals using
ultra-performance liquid-chromatography tandem mass spectrometry.
PLoS One. 11:e01634982016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jiang M, Gao PF, Li HQ, Tian PY and Fan
XM: Ghrelin inhibition of ethanol-induced gastric epithelial cell
apoptosis is mediated by miR-21. Int J Clin Exp Pathol.
8:4662–4672. 2015.PubMed/NCBI
|
35
|
Chang W, Bai J, Tian S, Ma M, Li W, Yin Y,
Deng R, Cui J, Li J, Wang G, et al: Autophagy protects gastric
mucosal epithelial cells from ethanol-induced oxidative damage via
mTOR signaling pathway. Exp Biol Med (Maywood). 242:1025–1033.
2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Olguin-Martinez M, Hernandez-Espinosa DR
and Hernandez-Munoz R: High alpha-Tocopherol dosing increases lipid
metabolism by changing redox state in damaged rat gastric mucosa
and liver after ethanol treatment. Clin Sci (Lond). 132:1257–1272.
2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Isbil-Buyukcoskun N, Cam B, Suyen GG and
Ozluk K: Effects of intracerebroventricularly injected
glucagon-like peptide-2 on ethanol-induced gastric mucosal damage
in rats. Endocr Res. Apr 9–2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
39
|
Sahin HH, Cumbul A, Uslu U, Yilmaz Z,
Ercan F and Alican I: The effect of 1,25 dihydroxyvitamin D3 on
HCl/Ethanol-induced gastric injury in rats. Tissue Cell. 51:68–76.
2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Guo L, Guo J, Liu H, Zhang J, Chen X, Qiu
Y and Fu S: Tea polyphenols suppress growth and virulence-related
factors of Haemophilus parasuis. J Vet Med Sci. 80:1047–1053. 2018.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Sun L, Gidley MJ and Warren FJ: Tea
polyphenols enhance binding of porcine pancreatic alpha-amylase
with starch granules but reduce catalytic activity. Food Chem.
258:164–173. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Arent SM, Senso M, Golem DL and McKeever
KH: The effects of theaflavin-enriched black tea extract on muscle
soreness, oxidative stress, inflammation, and endocrine responses
to acute anaerobic interval training: A randomized, double-blind,
crossover study. J Int Soc Sports Nutr. 7:112010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fatima M, Kesharwani RK, Misra K and Rizvi
SI: Protective effect of theaflavin on erythrocytes subjected to in
vitro oxidative stress. Biochem Res Int. 2013:6497592013.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Wu YY, Li W, Xu Y, Jin EH and Tu YY:
Evaluation of the antioxidant effects of four main theaflavin
derivatives through chemiluminescence and DNA damage analyses. J
Zhejiang Univ Sci B. 12:744–751. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
do Carmo TLL, Azevedo VC, de Siqueira PR,
Galvao TD, Dos Santos FA, Dos Reis Martinez CB, Appoloni CR and
Fernandes MN: Reactive oxygen species and other biochemical and
morphological biomarkers in the gills and kidneys of the
Neotropical freshwater fish, Prochilodus lineatus, exposed to
titanium dioxide (TiO2) nanoparticles. Environ Sci
Pollut Res Int. Jun 1–2018.(Epub ahead of print). View Article : Google Scholar
|
46
|
Li H, Cao F, Zhao F, Yang Y, Teng M, Wang
C and Qiu L: Developmental toxicity, oxidative stress and
immunotoxicity induced by three strobilurins (pyraclostrobin,
trifloxystrobin and picoxystrobin) in zebrafish embryos.
Chemosphere. 207:781–790. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Sun Y, Liu J, Ye G, Gan F, Hamid M, Liao S
and Huang K: Protective effects of zymosan on heat stress-induced
immunosuppression and apoptosis in dairy cows and peripheral blood
mononuclear cells. Cell Stress Chaperones. Jun 2–2018.(Epub ahead
of print). View Article : Google Scholar
|
48
|
Meng LQ, Wang Y, Luo YH, Piao XJ, Liu C,
Wang Y, Zhang Y, Wang JR, Wang H, Xu WT, et al: Quinalizarin
induces apoptosis through reactive oxygen Species (ROS)-Mediated
mitogen-activated protein kinase (MAPK) and signal transducer and
activator of transcription 3 (STAT3) signaling pathways in
colorectal cancer cells. Med Sci Monit. 24:3710–3719. 2018.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Liu X, Kim CN, Yang J, Jemmerson R and
Wang X: Induction of apoptotic program in cell-free extracts:
Requirement for dATP and cytochromec. Cell. 86:147–157. 1996.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Han DK, Chaudhary PM, Wright ME, Friedman
C, Trask BJ, Riedel RT, Baskin DG, Schwartz SM and Hood L: MRIT, a
novel death-effector domain-containing protein, interacts with
caspases and BclXL and initiates cell death. Proc Natl Acad Sci
USA. 94:pp. 11333–11338. 1997; View Article : Google Scholar : PubMed/NCBI
|
51
|
Scatena R, Bottoni P, Botta G, Martorana
GE and Giardina B: The role of mitochondria in pharmacotoxicology:
A reevaluation of an old, newly emerging topic. Am J Physiol Cell
Physiol. 293:C12–C21. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Becatti M, Barygina V, Mannucci A, Emmi G,
Prisco D, Lotti T, Fiorillo C and Taddei N: Sirt1 protects against
oxidative stress-induced apoptosis in fibroblasts from psoriatic
patients: A new insight into the pathogenetic mechanisms of
psoriasis. Int J Mol Sci. 19(pii): E15722018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhang Y, Miao LS, Cai YM, He JX, Zhang ZN,
Wu G and Zheng J: TXNIP knockdown alleviates hepatocyte ischemia
reperfusion injury through preventing p38/JNK pathway activation.
Biochem Biophys Res Commun. 502:409–414. 2018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Soustek MS, Balsa E, Barrow JJ,
Jedrychowski M, Vogel R, Jan S, Gygi SP and Puigserver P:
Inhibition of the ER stress IRE1alpha inflammatory pathway protects
against cell death in mitochondrial complex I mutant cells. Cell
Death Dis. 9:6582018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Junttila MR, Li SP and Westermarck J:
Phosphatase-mediated crosstalk between MAPK signaling pathways in
the regulation of cell survival. FASEB J. 22:954–965. 2008.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Feng W, Li J, Liao S, Ma S, Li F, Zhong C,
Li G, Wei Y, Huang H, Wei Q, et al: Go6983 attenuates titanium
particle-induced osteolysis and RANKL mediated osteoclastogenesis
through the suppression of NFkappaB/JNK/p38 pathways. Biochem
Biophys Res Commun. Jun 5–2018.(Epub ahead of print). View Article : Google Scholar
|
57
|
Paudel P, Jung HA and Choi JS:
Anthraquinone and naphthopyrone glycosides from Cassia obtusifolia
seeds mediate hepatoprotection via Nrf2-mediated HO-1 activation
and MAPK modulation. Arch Pharm Res. 41:677–689. 2018. View Article : Google Scholar : PubMed/NCBI
|
58
|
You MM, Chen YF, Pan YM, Liu YC, Tu J,
Wang K and Hu FL: Royal Jelly attenuates LPS-induced inflammation
in BV-2 microglial cells through modulating NF-kappaB and p38/JNK
signaling pathways. Mediators Inflamm. 2018:78343812018. View Article : Google Scholar : PubMed/NCBI
|