1
|
Castellanos MR, Nehru VM, Pirog EC and
Optiz L: Fluorescence microscopy of H&E stained cervical
biopsies to assist the diagnosis and grading of CIN. Pathol Res
Pract. 214:605–611. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Vineis P and Wild CP: Global cancer
patterns: Causes and prevention. Lancet. 383:549–557. 2014.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Schwarz C, Pedraza-Flechas AM, Lope V,
Pastor-Barriuso R, Pollan M and Perez-Gomez B: Gynaecological
cancer and night shift work: A systematic review. Maturitas.
110:21–28. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Delgado G, Bundy B, Zaino R, Sevin BU,
Creasman WT and Major F: Prospective surgical-pathological study of
disease-free interval in patients with stage IB squamous cell
carcinoma of the cervix: A Gynecologic Oncology Group study.
Gynecol Oncol. 38:352–357. 1990. View Article : Google Scholar : PubMed/NCBI
|
6
|
U.S. Preventive Services Task Force, .
Screening for cervical cancer: Recommendations and rationale. Am J
Nurs. 103:101–102, 105–106, 108–109. 2003.
|
7
|
Screening PDQ and Prevention Editorial B:
Cervical Cancer Screening (PDQ®): Health Professional
VersionPDQ Cancer Information Summaries. National Cancer Institute
(US); Bethesda, MD: 2002
|
8
|
Kim JW, Lee CG, Park YG, Kim KS, Kim IK,
Sohn YW, Min HK, Lee JM and Namkoong SE: Combined analysis of
germline polymorphisms of p53, GSTM1, GSTT1, CYP1A1, and CYP2E1:
Relation to the incidence rate of cervical carcinoma. Cancer.
88:2082–2091. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
McConnell BB, Klapproth JM, Sasaki M,
Nandan MO and Yang VW: Krüppel-like factor 5 mediates transmissible
murine colonic hyperplasia caused by Citrobacter rodentium
infection. Gastroenterology. 134:1007–1016. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chanchevalap S, Nandan MO, McConnell BB,
Charrier L, Merlin D, Katz JP and Yang VW: Kruppel-like factor 5 is
an important mediator for lipopolysaccharide-induced
proinflammatory response in intestinal epithelial cells. Nucleic
Acids Res. 34:1216–1223. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Parisi S, Passaro F, Aloia L, Manabe I,
Nagai R, Pastore L and Russo T: Klf5 is involved in self-renewal of
mouse embryonic stem cells. J Cell Sci. 121:2629–2634. 2008.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Jia L, Zhou Z, Liang H, Wu J, Shi P, Li F,
Wang Z, Wang C, Chen W, Zhang H, et al: KLF5 promotes breast cancer
proliferation, migration and invasion in part by upregulating the
transcription of TNFAIP2. Oncogene. 35:2040–2051. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bafford R, Sui XX, Wang G and Conte M:
Angiotensin II and tumor necrosis factor-alpha upregulate survivin
and Kruppel-like factor 5 in smooth muscle cells: Potential
relevance to vein graft hyperplasia. Surgery. 140:289–296. 2006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Pearson R, Fleetwood J, Eaton S, Crossley
M and Bao S: Krüppel-like transcription factors: A functional
family. Int J Biochem Cell Biol. 40:1996–2001. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
McConnell BB and Yang VW: Mammalian
Krüppel-like factors in health and diseases. Physiol Rev.
90:1337–1381. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dang DT, Pevsner J and Yang VW: The
biology of the mammalian Krüppel-like family of transcription
factors. Int J Biochem Cell Biol. 32:1103–1121. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lyng H, Brøvig RS, Svendsrud DH, Holm R,
Kaalhus O, Knutstad K, Oksefjell H, Sundfør K, Kristensen GB and
Stokke T: Gene expressions and copy numbers associated with
metastatic phenotypes of uterine cervical cancer. BMC Genomics.
7:2682006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang WT and Zheng PS: Krüppel-like factor
4 functions as a tumor suppressor in cervical carcinoma. Cancer.
118:3691–3702. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Marrero-Rodríguez D, Taniguchi-Ponciano K,
Jimenez-Vega F, Romero-Morelos P, Mendoza-Rodriguez M, Mantilla A,
Rodriguez-Esquivel M, Hernandez D, Hernandez A, Gomez-Gutierrez G,
et al: Krüppel-like factor 5 as potential molecular marker in
cervical cancer and the KLF family profile expression. Tumour Biol.
35:11399–11407. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kanchiku T, Taguchi T and Kawai S:
Magnetic resonance imaging diagnosis and new classification of the
osteoporotic vertebral fracture. J Orthop Sci. 8:463–466. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Gupta GP and Massagué J: Cancer
metastasis: Building a framework. Cell. 127:679–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Barré S, Massetti M, Leleu H and De Bels
F: Organised screening for cervical cancer in France: A
cost-effectiveness assessment. BMJ Open. 7:e0146262017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Szekerczés T, Galamb Á, Kocsis A, Benczik
M, Takács T, Martonos A, Járay B, Kiss A, Jeney C, Nyíri M, et al:
Dual-stained cervical cytology and histology with Claudin-1 and
Ki67. Pathol Oncol Res. Feb 13–2018.(Epub ahead of print).
View Article : Google Scholar
|
25
|
Kanthiya K, Khunnarong J, Tangjitgamol S,
Puripat N and Tanvanich S: Expression of the p16 and Ki67 in
cervical squamous intraepithelial lesions and cancer. Asian Pac J
Cancer Prev. 17:3201–3206. 2016.PubMed/NCBI
|
26
|
Wang PH, Yang SF, Tseng CJ, Ying TH, Ko JL
and Lin LY: The role of lipocalin 2 and its concernment with human
nonmetastatic clone 23 type 1 and p53 in carcinogenesis of uterine
cervix. Reprod Sci. 18:447–455. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang S, Qin J, Chen J, Cheng H, Meng Q,
Zhang J, Wang H and Li H: Laparoscopic surgery inhibits the
proliferation and metastasis of cervical cancer cells. Int J Clin
Exp Med. 8:16543–16549. 2015.PubMed/NCBI
|
28
|
Wu CH, Lin YW, Wu TF, Ko JL and Wang PH:
Clinical implication of voltage-dependent anion channel 1 in
uterine cervical cancer and its action on cervical cancer cells.
Oncotarget. 7:4210–4225. 2016.PubMed/NCBI
|
29
|
Wang PH, Ko JL, Yang SF and Lin LY:
Implication of human nonmetastatic clone 23 Type 1 and its
downstream gene lipocalin 2 in metastasis and patient's survival of
cancer of uterine cervix. Int J Cancer. 129:2380–2389. 2011.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kasorn A, Loison F, Kangsamaksin T,
Jongrungruangchok S and Ponglikitmongkol M: Terrein inhibits
migration of human breast cancer cells via inhibition of the Rho
and Rac signaling pathways. Oncol Rep. 39:1378–1386.
2018.PubMed/NCBI
|
31
|
Tyszka-Czochara M, Lasota M and Majka M:
Caffeic acid and metformin inhibit invasive phenotype induced by
TGF-β1 in C-4I and HTB-35/SiHa human cervical squamous carcinoma
cells by acting on different molecular targets. Int J Mol Sci.
19(pii): E2662018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang Q, Xu H and Zhao X: Baicalin inhibits
human cervical cancer cells by suppressing protein kinase C/signal
transducer and activator of transcription (PKC/STAT3) signaling
pathway. Med Sci Monit. 24:1955–1961. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wu MH, Lin CL, Chiou HL, Yang SF, Lin CY,
Liu CJ and Hsieh YH: Praeruptorin A inhibits human cervical cancer
cell growth and invasion by suppressing MMP-2 expression and ERK1/2
signaling. Int J Mol Sci. 19(pii): E102017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yuan Y, Ye HQ and Ren QC: Upregulation of
the BDNF/TrKB pathway promotes epithelial-mesenchymal transition,
as well as the migration and invasion of cervical cancer. Int J
Oncol. 52:461–472. 2018.PubMed/NCBI
|
35
|
Zhou WJ, Yang HL, Chang KK, Meng Y, Wang
MY, Yuan MM, Li MQ and Xie F: Human thymic stromal lymphopoietin
promotes the proliferation and invasion of cervical cancer cells by
downregulating microRNA-132 expression. Oncol Lett. 14:7910–7916.
2017.PubMed/NCBI
|
36
|
Chen Y, Sun Z, Qi M, Wang X, Zhang W, Chen
C, Liu J and Zhao W: INPP4B restrains cell proliferation and
metastasis via regulation of the PI3K/AKT/SGK pathway. J Cell Mol
Med. 22:2935–2943. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dong P, Hao F, Dai S and Tian L:
Combination therapy Eve and Pac to induce apoptosis in cervical
cancer cells by targeting PI3K/AKT/mTOR pathways. J Recept Signal
Transduct Res. 38:83–88. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tamura R, Yoshihara K, Saito T, Ishimura
R, Martínez-Ledesma JE, Xin H, Ishiguro T, Mori Y, Yamawaki K, Suda
K, et al: Novel therapeutic strategy for cervical cancer harboring
FGFR3-TACC3 fusions. Oncogenesis. 7:42018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang W, Xiong Z, Wei T, Li Q, Tan Y, Ling
L and Feng X: Nuclear factor 90 promotes angiogenesis by regulating
HIF-1α/VEGF-A expression through the PI3K/Akt signaling pathway in
human cervical cancer. Cell Death Dis. 9:2762018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Jiang H, Li J, Chen A, Li Y, Xia M, Guo P,
Yao S and Chen S: Fucosterol exhibits selective antitumor
anticancer activity against HeLa human cervical cell line by
inducing mitochondrial mediated apoptosis, cell cycle migration
inhibition and downregulation of m-TOR/PI3K/Akt signalling pathway.
Oncol Lett. 15:3458–3463. 2018.PubMed/NCBI
|
41
|
Li A, Gu Y, Li X, Sun H, Zha H, Xie J,
Zhao J, Huang M, Chen L, Peng Q, et al: S100A6 promotes the
proliferation and migration of cervical cancer cells via the
PI3K/Akt signaling pathway. Oncol Lett. 15:5685–5693.
2018.PubMed/NCBI
|
42
|
Shi X, Ran L, Liu Y, Zhong SH, Zhou PP,
Liao MX and Fang W: Knockdown of hnRNP A2/B1 inhibits cell
proliferation, invasion and cell cycle triggering apoptosis in
cervical cancer via PI3K/AKT signaling pathway. Oncol Rep.
39:939–950. 2018.PubMed/NCBI
|