1
|
Valsangkar N, Sehdev A, Misra S, Zimmers
TA, O'Neil BH and Koniaris LG: Current management of
gastrointestinal stromal tumors: Surgery, current biomarkers,
mutations, and therapy. Surgery. 158:1149–1164. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ducimetière F, Lurkin A, Ranchère-Vince D,
Decouvelaere AV, Péoc'h M, Istier L, Chalabreysse P, Muller C,
Alberti L, Bringuier PP, et al: Incidence of sarcoma histotypes and
molecular subtypes in a prospective epidemiological study with
central pathology review and molecular testing. PLoS One.
6:e202942011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Patil DT and Rubin BP: Gastrointestinal
stromal tumor: Advances in diagnosis and management. Arch Pathol
Lab Med. 135:1298–1310. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Joensuu H, Hohenberger P and Corless CL:
Gastrointestinal stromal tumour. Lancet. 382:973–983. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Joensuu H, Vehtari A, Riihimaki J, Nishida
T, Steigen SE, Brabec P, Plank L, Nilsson B, Cirilli C, Braconi C,
et al: Risk of recurrence of gastrointestinal stromal tumour after
surgery: An analysis of pooled population-based cohorts. Lancet
Oncol. 13:265–274. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pedroso FE, Raut CP, Xiao H, Yeo CJ and
Koniaris LG: Has the survival rate for surgically resected gastric
gastrointestinal stromal tumors improved in the tyrosine kinase
inhibitor era? Ann Surg Oncol. 19:1748–1758. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Artinyan A, Kim J, Soriano P, Chow W,
Bhatia S and Ellenhorn JD: Metastatic gastrointestinal stromal
tumors in the era of imatinib: Improved survival and elimination of
socioeconomic survival disparities. Cancer Epidemiol Biomarkers
Prev. 17:2194–2201. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Corless CL, Barnett CM and Heinrich MC:
Gastrointestinal stromal tumours: Origin and molecular oncology.
Nat Rev Cancer. 11:865–878. 2011. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Vernuccio F, Taibbi A, Picone DLA, Grutta
L, Midiri M, Lagalla R, Lo Re G and Bartolotta TV: Imaging of
gastrointestinal stromal tumors: From diagnosis to evaluation of
therapeutic response. Anticancer Res. 36:2639–2648. 2016.PubMed/NCBI
|
10
|
Heinrich MC, Corless CL, Duensing A,
McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A,
Town A, et al: PDGFRA activating mutations in gastrointestinal
stromal tumors. Science. 299:708–710. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ricci R: Syndromic gastrointestinal
stromal tumors. Hered Cancer Clin Pract. 14:152016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Joensuu H and DeMatteo RP: The management
of gastrointestinal stromal tumors: A model for targeted and
multidisciplinary therapy of malignancy. Annu Rev Med. 63:247–258.
2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gramza AW, Corless CL and Heinrich MC:
Resistance to tyrosine kinase inhibitors in gastrointestinal
stromal tumors. Clin Cancer Res. 15:7510–7518. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ostrowski J, Polkowski M, Paziewska A,
Skrzypczak M, Goryca K, Rubel T, Kokoszyñska K, Rutkowski P,
Nowecki ZI, Vel Dobosz AJ, et al: Functional features of gene
expression profiles differentiating gastrointestinal stromal
tumours according to KIT mutations and expression. BMC Cancer.
9:4132009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Astolfi A, Nannini M, Pantaleo MA, Di
Battista M, Heinrich MC, Santini D, Catena F, Corless CL, Maleddu
A, Saponara M, et al: A molecular portrait of gastrointestinal
stromal tumors: An integrative analysis of gene expression
profiling and high-resolution genomic copy number. Lab Invest.
90:1285–1294. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP:
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
R Core Team, . R: A language and
environment for statistical computing. R Foundation for Statistical
Computing; Vienna: http://www.R-project.org/2017
|
18
|
Leek JT, Johnson WE, Parker HS, Jaffe AE
and Storey JD: The sva package for removing batch effects and other
unwanted variation in high-throughput experiments. Bioinformatics.
28:882–883. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Paradis E, Claude J and Strimmer K: APE:
Analyses of phylogenetics and evolution in R language.
Bioinformatics. 20:289–290. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Smyth GK, Michaud J and Scott HS: Use of
within-array replicate spots for assessing differential expression
in microarray experiments. Bioinformatics. 21:2067–2075. 2005.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Metsalu T and Vilo J: ClustVis: A web tool
for visualizing clustering of multivariate data using principal
component analysis and heatmap. Nucleic Acids Res. 43:W566–W570.
2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Maere S, Heymans K and Kuiper M: BiNGO: A
Cytoscape plugin to assess overrepresentation of gene ontology
categories in biological networks. Bioinformatics. 21:3448–3449.
2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong
S, Kong L, Gao G, Li CY and Wei L: KOBAS 2.0: A web server for
annotation and identification of enriched pathways and diseases.
Nucleic Acids Res. 39(Web Server Issue): W316–W322. 2011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Szklarczyk D, Morris JH, Cook H, Kuhn M,
Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al:
The STRING database in 2017: Quality-controlled protein-protein
association networks, made broadly accessible. Nucleic Acids Res.
45:D362–D368. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and
Lin CY: CytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst Biol. 8 Suppl 4:S112014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bindea G, Mlecnik B, Hackl H, Charoentong
P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z and
Galon J: ClueGO: A Cytoscape plug-in to decipher functionally
grouped gene ontology and pathway annotation networks.
Bioinformatics. 25:1091–1093. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bader GD and Hogue CW: An automated method
for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ahmad F, Lad P, Bhatia S and Das BR:
Molecular spectrum of c-KIT and PDGFRA gene mutations in gastro
intestinal stromal tumor: Determination of frequency, distribution
pattern and identification of novel mutations in Indian patients.
Med Oncol. 32:4242015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Eccles SA and Welch DR: Metastasis: Recent
discoveries and novel treatment strategies. Lancet. 369:1742–1757.
2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Malanchi I, Santamaria-Martínez A, Susanto
E, Peng H, Lehr HA, Delaloye JF and Huelsken J: Interactions
between cancer stem cells and their niche govern metastatic
colonization. Nature. 481:85–89. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wain LV, Verwoert GC, O'Reilly PF, Shi G,
Johnson T, Johnson AD, Bochud M, Rice KM, Henneman P, Smith AV, et
al: Genome-wide association study identifies six new loci
influencing pulse pressure and mean arterial pressure. Nat Genet.
43:1005–1011. 2011. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Semba S, Itoh N, Ito M, Youssef EM, Harada
M, Moriya T, Kimura W and Yamakawa M: Down-regulation of PIK3CG, a
catalytic subunit of phosphatidylinositol 3-OH kinase, by CpG
hypermethylation in human colorectal carcinoma. Clin Cancer Res.
8:3824–3831. 2002.PubMed/NCBI
|
35
|
Li J, Dang Y, Gao J, Li Y, Zou J and Shen
L: PI3K/AKT/mTOR pathway is activated after imatinib secondary
resistance in gastrointestinal stromal tumors (GISTs). Med Oncol.
32:1112015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yamaguchi R, Harada H and Hirota K:
VHL-deficient renal cancer cells gain resistance to
mitochondria-activating apoptosis inducers by activating AKT
through the IGF1R-PI3K pathway. Tumour Biol. 37:13295–13306. 2016.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Ludovini V, Flacco A, Bianconi F, Ragusa
M, Vannucci J, Bellezza G, Chiari R, Minotti V, Pistola L,
Tofanetti FR, et al: Concomitant high gene copy number and protein
overexpression of IGF1R and EGFR negatively affect disease-free
survival of surgically resected non-small-cell-lung cancer
patients. Cancer Chemother Pharmacol. 71:671–680. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lee EJ, Kang G, Kang SW, Jang KT, Lee J,
Park JO, Park CK, Sohn TS, Kim S and Kim KM: GSTT1 copy number gain
and ZNF overexpression are predictors of poor response to imatinib
in gastrointestinal stromal tumors. PLoS One. 8:e772192013.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Tarn C, Rink L, Merkel E, Flieder D,
Pathak H, Koumbi D, Testa JR, Eisenberg B, von Mehren M and Godwin
AK: Insulin-like growth factor 1 receptor is a potential
therapeutic target for gastrointestinal stromal tumors. Proc Natl
Acad Sci USA. 105:8387–8392. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Belinsky MG, Rink L, Flieder DB, Jahromi
MS, Schiffman JD, Godwin AK and Mehren Mv: Overexpression of
insulin-like growth factor 1 receptor and frequent mutational
inactivation of SDHA in wild-type SDHB-negative gastrointestinal
stromal tumors. Genes Chromosomes Cancer. 52:214–224. 2013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Pantaleo MA, Ravegnini G, Astolfi A,
Simeon V, Nannini M, Saponara M, Urbini M, Gatto L, Indio V,
Sammarini G, et al: Integrating miRNA and gene expression profiling
analysis revealed regulatory networks in gastrointestinal stromal
tumors. Epigenomics. 8:1347–1366. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Patel MB, Pothula SP, Xu Z, Lee AK,
Goldstein D, Pirola RC, Apte MV and Wilson JS: The role of the
hepatocyte growth factor/c-MET pathway in pancreatic stellate
cell-endothelial cell interactions: Antiangiogenic implications in
pancreatic cancer. Carcinogenesis. 35:1891–1900. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hack SP, Bruey JM and Koeppen H:
HGF/MET-directed therapeutics in gastroesophageal cancer: A review
of clinical and biomarker development. Oncotarget. 5:2866–2880.
2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Soto-Pantoja DR, Sipes JM, Martin-Manso G,
Westwood B, Morris NL, Ghosh A, Emenaker NJ and Roberts DD: Dietary
fat overcomes the protective activity of thrombospondin-1 signaling
in the Apc(Min/+) model of colon cancer. Oncogenesis. 5:e2302016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Kashihara H, Shimada M, Yoshikawa K,
Higashijima J, Tokunaga T, Nishi M, Takasu C and Ishikawa D:
Correlation between thrombospondin-1 expression in non-cancer
tissue and gastric carcinogenesis. Anticancer Res. 37:3547–3552.
2017.PubMed/NCBI
|
46
|
Huang T, Wang L, Liu D, Li P, Xiong H,
Zhuang L, Sun L, Yuan X and Qiu H: FGF7/FGFR2 signal promotes
invasion and migration in human gastric cancer through upregulation
of thrombospondin-1. Int J Oncol. 50:1501–1512. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Moasser MM: Targeting the function of the
HER2 oncogene in human cancer therapeutics. Oncogene. 26:6577–6592.
2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Van Cutsem E, Sagaert X, Topal B,
Haustermans K and Prenen H: Gastric cancer. Lancet. 388:2654–2664.
2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Roy R, Yang J and Moses MA: Matrix
metalloproteinases as novel biomarkers and potential therapeutic
targets in human cancer. J Clin Oncol. 27:5287–5297. 2009.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Sebastiano M, Momi S, Falcinelli E, Bury
L, Hoylaerts MF and Gresele P: A novel mechanism regulating human
platelet activation by MMP-2-mediated PAR1 biased signaling. Blood.
129:883–895. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kim J, Pyun JA, Cho SW, Lee K and Kwack K:
Lymph node metastasis of gastric cancer is associated with the
interaction between poly(ADP-ribose) polymerase 1 and matrix
metallopeptidase 2. DNA Cell Biol. 30:1011–1017. 2011. View Article : Google Scholar : PubMed/NCBI
|