1
|
Guariguata L, Whiting DR, Hambleton I,
Beagley J, Linnenkamp U and Shaw JE: Global estimates of diabetes
prevalence for 2013 and projections for 2035. Diabetes Res Clin
Pract. 103:137–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Agarwal SK, Saikia UK, Sarma D and Devi R:
Assessment of glomerular and tubular function in the evaluation of
diabetic nephropathy: A cross-sectional study. Indian J Endocrinol
Metab. 22:451–456. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fi Z, Kovács G and Szentes V: Role of
trimetazidine in the treatment of diabetic microangiopathy in
ischaemic heart disease. Ore Hetil. 156:765–768. 2015.(In
Hungarian). View Article : Google Scholar
|
4
|
De Gregorio C, Contador D, Campero M,
Ezquer M and Ezquer F: Characterization of diabetic neuropathy
progression in a mouse model of type 2 diabetes mellitus. Biol
Open. 7:bio0368302018. View Article : Google Scholar : PubMed/NCBI
|
5
|
ENCODE Project Consortium, . An integrated
encyclopedia of DNA elements in the human genome. Nature.
489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mattick JS: RNA regulation: A new
genetics? Nat Rev Genetics. 5:316–323. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kataoka M and Wang DZ: Non-coding RNAs
including miRNAs and lncRNAs in cardiovascular biology and disease.
Cells. 3:883–898. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li
YJ, Yan B and Jiang Q: Pathogenic role of lncRNA-MALAT1 in
endothelial cell dysfunction in diabetes mellitus. Cell Death Dis.
5:e15062014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ng SY, Lin L, Soh BS and Stanton LW: Long
noncoding RNAs in development and disease of the central nervous
system. Trends Genet. 29:461–468. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lalevee S and Feil R: Long noncoding RNAs
in human disease: Emerging mechanisms and therapeutic strategies.
Epigenomics. 7:877–879. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Prensner JR and Chinnaiyan AM: The
emergence of lncRNAs in cancer biology. Cancer Discov. 1:391–407.
2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhao Z, Liu B, Li B, Song C, Diao H, Guo
Z, Li Z and Zhang J: Inhibition of long noncoding RNA IGF2AS
promotes angiogenesis in type 2 diabetes. Biomed Pharmacother.
92:445–450. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou Y, Shan T, Ding W, Hua Z, Shen Y, Lu
Z, Chen B and Dai T: Study on mechanism about long noncoding RNA
MALAT1 affecting pancreatic cancer by regulating Hippo-YAP
signaling. J Cell Physiol. 233:5805–5814. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu L, Jin L, Zhang W and Zhang L: Roles of
long non-coding RNA CCAT2 in cervical cancer cell growth and
apoptosis. Med Sci Monit. 22:875–879. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sun J, Chu H, Ji J, Huo G, Song Q and
Zhang X: Long non-coding RNA HOTAIR modulates HLA-G expression by
absorbing miR-148a in human cervical cancer. Int J Oncol.
49:943–952. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sun J, Chen X, Wang Z, Guo M, Shi H, Wang
X, Cheng L and Zhou M: A potential prognostic long non-coding RNA
signature to predict metastasis-free survival of breast cancer
patients. Sci Rep. 5:165532015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ni Y, Huang H, Chen Y, Cao M, Zhou H and
Zhang Y: Investigation of long non-coding RNA expression profiles
in the substantia nigra of parkinson's disease. Cell Mol Neurobiol.
37:329–338. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chung JY, Kim HS and Song J: Iron
metabolism in diabetes-induced Alzheimer's disease: A focus on
insulin resistance in the brain. Biometals. 31:705–714. 2018.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Giatti S, Diviccaro S and Melcangi RC:
Neuroactive steroids and sex-dimorphic nervous damage induced by
diabetes mellitus. Cell Mol Neurobiol. 2018.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhai Y, Meng X, Ye T, Xie W, Sun G and Sun
X: Inhibiting the NLRP3 inflammasome activation with MCC950
ameliorates diabetic encephalopathy in db/db mice. Molecules.
23:5222018. View Article : Google Scholar
|
21
|
Roberts TC, Morris KV and Wood MJ: The
role of long non-coding RNAs in neurodevelopment, brain function
and neurological disease. Philos Trans R Soc Lond B Biol Sci.
369:201305072014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lin N, Chang KY, Li Z, Gates K, Rana ZA,
Dang J, Zhang D, Han T, Yang CS, Cunningham TJ, et al: An
evolutionarily conserved long noncoding RNA TUNA controls
pluripotency and neural lineage commitment. Mol Cell. 53:1005–1019.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mus E, Hof PR and Tiedge H: Dendritic
BC200 RNA in aging and in Alzheimer's disease. Proc Natl Acad Sci
USA. 104:10679–10684. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou M, Zhang Z, Zhao H, Bao S, Cheng L
and Sun J: An immune-related six-lncRNA signature to improve
prognosis prediction of glioblastoma multiforme. Mol Neurobiol.
55:3684–3697. 2018.PubMed/NCBI
|
25
|
Heineke EW, Johnson MB, Dillberger JE and
Robinson KM: Antioxidant MDL 29,311 prevents diabetes in nonobese
diabetic and multiple low-dose STZ-injected mice. Diabetes.
42:1721–1730. 1993. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livaka KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Guennewig B and Cooper AA: The central
role of noncoding RNA in the brain. Int Rev Neurobiol. 116:153–194.
2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Erkinjuntti T, Roman G, Gauthier S,
Feldman H and Rockwood K: Emerging therapies for vascular dementia
and vascular cognitive impairment. Stroke. 35:1010–1017. 2004.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kuhad A and Chopra K: Effect of sesamol on
diabetes-associated cognitive decline in rats. Exp Brain Res.
185:411–420. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Capiotti KM, De Moraes DA, Menezes FP,
Kist LW, Bogo MR and Da Silva RS: Hyperglycemia induces memory
impairment linked to increased acetylcholinesterase activity in
zebrafish (Danio rerio). Behav Brain Res. 274:319–325. 2014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Iwamoto H, Calcutt MW and Blakely RD:
Differential impact of genetically modulated choline transporter
expression on the release of endogenous versus newly synthesized
acetylcholine. Neurochem Int. 98:138–145. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hao X, Ma B, Song G, Ye W, Li W and Tang
Y: The role of inflammatory factor NF-kappa B in the pathogenesis
and treatment of type 2 diabetes mellitus. Hebei Med J. 32:97–99.
2010.(In Chinese).
|
33
|
Park E, Lee SM, Lee JE and Kim JH:
Anti-inflammatory activity of mulberry leaf extract through
inhibition of NF-κB. J Funct Foods. 5:178–186. 2013. View Article : Google Scholar
|
34
|
Yao X and Jin X: NF-κB in expression of
hippocampal neurons with chronic diabetic rats. Chin J Med Pract.
4:5122005.(In Chinese).
|
35
|
Wang HK, Yan H, Wang K and Wang J: Dynamic
regulation effect of long non-coding RNA-UCA1 on NF-κB in
hippocampus of epilepsy rats. Eur Rev Med Pharmacol Sci.
21:3113–3119. 2017.PubMed/NCBI
|
36
|
Peng Q, Liu H, Shi S and Li M: Lycium
ruthenicum polysaccharide attenuates inflammation through
inhibiting TLR4/NF-κB signaling pathway. Int J Biol Macromol.
67:330–335. 2014. View Article : Google Scholar : PubMed/NCBI
|