1
|
Young C, Jevtovic-Todorovic V, Qin YQ,
Tenkova T, Wang H, Labruyere J and Olney JW: Potential of ketamine
and midazolam, individually or in combination, to induce apoptotic
neurodegeneration in the infant mouse brain. Br J Pharmacol.
146:189–197. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lee BH, Chan JT, Hazarika O, Vutskits L
and Sall JW: Early exposure to volatile anesthetics impairs
long-term associative learning and recognition memory. PLoS One.
9:e1053402014. View Article : Google Scholar : PubMed/NCBI
|
3
|
DiMaggio C, Sun LS and Li G: Early
childhood exposure to anesthesia and risk of developmental and
behavioral disorders in a sibling birth cohort. Anesth Analg.
113:1143–1151. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Green SM, Roback MG, Kennedy RM and Krauss
B: Clinical practice guideline for emergency department ketamine
dissociative sedation: 2011 update. Ann Emerg Med. 57:449–461.
2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mistry RB and Nahata MC: Ketamine for
conscious sedation in pediatric emergency care. Pharmacotherapy.
25:1104–1111. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Paule MG, Li M, Allen RR, Liu F, Zou X,
Hotchkiss C, Hanig JP, Patterson TA, Slikker W Jr and Wang C:
Ketamine anesthesia during the first week of life can cause
long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol
Teratol. 33:220–230. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Scallet AC, Schmued LC, Slikker W Jr,
Grunberg N, Faustino PJ, Davis H, Lester D, Pine PS, Sistare F and
Hanig JP: Developmental neurotoxicity of ketamine: Morphometric
confirmation, exposure parameters, and multiple fluorescent
labeling of apoptotic neurons. Toxicol Sci. 81:364–370. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Matus A: Actin-based plasticity in
dendritic spines. Science. 290:754–758. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rochefort NL and Konnerth A: Dendritic
spines: From structure to in vivo function. EMBO Rep. 13:699–708.
2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Blanpied TA and Ehlers MD: Microanatomy of
dendritic spines: Emerging principles of synaptic pathology in
psychiatric and neurological disease. Biol Psychiatry.
55:1121–1127. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
McCann RF and Ross DA: A Fragile balance:
Dendritic Spines, Learning, and Memory. Biol Psychiatry.
82:e11–e13. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tan H, Ren RR, Xiong ZQ and Wang YW:
Effects of ketamine and midazolam on morphology of dendritic spines
in hippocampal CA1 region of neonatal mice. Chin Med J (Engl).
122:455–459. 2009.PubMed/NCBI
|
13
|
Huang L and Yang G: Repeated exposure to
ketamine-xylazine during early development impairs motor
learning-dependent dendritic spine plasticity in adulthood.
Anesthesiology. 122:821–831. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Olson MF: Contraction reaction: Mechanical
regulation of Rho GTPase. Trends Cell Biol. 14:111–114. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Hedrick NG and Yasuda R: Regulation of Rho
GTPase proteins during spine structural plasticity for the control
of local dendritic plasticity. Curr Opin Neurobiol. 45:193–201.
2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lemkuil BP, Head BP, Pearn ML, Patel HH,
Drummond JC and Patel PM: Isoflurane neurotoxicity is mediated by
p75NTR-RhoA activation and actin depolymerization. Anesthesiology.
114:49–57. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zimering JH, Dong Y, Fang F, Huang L,
Zhang Y and Xie Z: Anesthetic sevoflurane causes Rho-dependent
filopodial shortening in mouse neurons. PLoS One. 11:e01596372016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Nagy D, Kocsis K, Fuzik J, Marosi M, Kis
Z, Teichberg VI, Toldi J and Farkas T: Kainate postconditioning
restores LTP in ischemic hippocampal CA1: Onset-dependent second
pathophysiological stress. Neuropharmacology. 61:1026–1032. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Caceres A, Banker G, Steward O, Binder L
and Payne M: MAP2 is localized to the dendrites of hippocampal
neurons which develop in culture. Brain Res. 315:314–318. 1984.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Castaneda P, Munoz M, Garcia-Rojo G, Ulloa
JL, Bravo JA, Márquez R, García-Pérez MA, Arancibia D, Araneda K,
Rojas PS, et al: Association of N-cadherin levels and downstream
effectors of Rho GTPases with dendritic spine loss induced by
chronic stress in rat hippocampal neurons. J Neurosci Res.
93:1476–1491. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Swanger SA, Mattheyses AL, Gentry EG and
Herskowitz JH: ROCK1 and ROCK2 inhibition alters dendritic spine
morphology in hippocampal neurons. Cell Logist. 5:e11332662016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Cohen ML, Chan SL, Way WL and Trevor AJ:
Distribution in the brain and metabolism of ketamine in the rat
after intravenous administration. Anesthesiology. 39:370–376. 1973.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Giardina SF, Cheung NS, Reid MT and Beart
PM: Kainate-induced apoptosis in cultured murine cerebellar granule
cells elevates expression of the cell cycle gene cyclin D1. J
Neurochem. 71:1325–1328. 1998. View Article : Google Scholar : PubMed/NCBI
|
24
|
Soriano SG, Liu Q, Li J, Liu JR, Han XH,
Kanter JL, Bajic D and Ibla JC: Ketamine activates cell cycle
signaling and apoptosis in the neonatal rat brain. Anesthesiology.
112:1155–1163. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zheng X, Zhou J and Xia Y: The role of
TNF-α in regulating ketamine-induced hippocampal neurotoxicity.
Arch Med Sci. 11:1296–1302. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
De Roo M, Klauser P, Briner A, Nikonenko
I, Mendez P, Dayer A, Kiss JZ, Muller D and Vutskits L: Anesthetics
rapidly promote synaptogenesis during a critical period of brain
development. PLoS One. 4:e70432009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Elia LP, Yamamoto M, Zang K and Reichardt
LF: p120 catenin regulates dendritic spine and synapse development
through Rho-family GTPases and cadherins. Neuron. 51:43–56. 2006.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Newell-Litwa KA, Badoual M, Asmussen H,
Patel H, Whitmore L and Horwitz AR: ROCK1 and 2 differentially
regulate actomyosin organization to drive cell and synaptic
polarity. J Cell Biol. 210:225–242. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pozueta J, Lefort R, Ribe EM, Troy CM,
Arancio O and Shelanski M: Caspase-2 is required for dendritic
spine and behavioural alterations in J20 APP transgenic mice. Nat
Commun. 4:19392013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tashiro A and Yuste R: Regulation of
dendritic spine motility and stability by Rac1 and Rho kinase:
Evidence for two forms of spine motility. Mol Cell Neurosci.
26:429–440. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Platholi J, Herold KF, Hemmings HC Jr and
Halpain S: Isoflurane reversibly destabilizes hippocampal dendritic
spines by an actin-dependent mechanism. PLoS One. 9:e1029782014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Darenfed H, Dayanandan B, Zhang T, Hsieh
SH, Fournier AE and Mandato CA: Molecular characterization of the
effects of Y-27632. Cell Motil Cytoskeleton. 64:97–109. 2007.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kang MG, Guo Y and Huganir RL: AMPA
receptor and GEF-H1/Lfc complex regulates dendritic spine
development through RhoA signaling cascade. Proc Natl Acad Sci USA.
106:3549–3554. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Huang L, Liu Y, Jin W, Ji X and Dong Z:
Ketamine potentiates hippocampal neurodegeneration and persistent
learning and memory impairment through the PKCgamma-ERK signaling
pathway in the developing brain. Brain Res. 1476:164–171. 2012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Xu H, Zhang J, Zhou W, Feng Y, Teng S and
Song X: The role of miR-124 in modulating hippocampal neurotoxicity
induced by ketamine anesthesia. Int J Neurosci. 125:213–220. 2015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Huang L, Liu Y, Zhang P, Kang R, Liu Y, Li
X, Bo L and Dong Z: In vitro dose-dependent inhibition of the
intracellular spontaneous calcium oscillations in developing
hippocampal neurons by ketamine. PLoS One. 8:e598042013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu JR, Baek C, Han XH, Shoureshi P and
Soriano SG: Role of glycogen synthase kinase-3β in ketamine-induced
developmental neuroapoptosis in rats. Br J Anaesth. 110 Suppl
1:i3–i9. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang G, Chang PC, Bekker A, Blanck TJ and
Gan WB: Transient effects of anesthetics on dendritic spines and
filopodia in the living mouse cortex. Anesthesiology. 115:718–726.
2011. View Article : Google Scholar : PubMed/NCBI
|