1
|
Döhner H, Weisdorf DJ and Bloomfield CD:
Acute myeloid leukemia. N Engl J Med. 373:1136–1152. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Terwilliger T and Abdul-Hay M: Acute
lymphoblastic leukemia: A comprehensive review and 2017 update.
Blood Cancer J. 7:e5772017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shi Y: Current status and progress of
lymphoma management in China. Int J Hematol. 107:405–412. 2018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
de Thé H, Pandolfi PP and Chen Z: Acute
promyelocytic leukemia: A paradigm for oncoprotein-targeted cure.
Cancer Cell. 32:552–560. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Saglio G, Cilloni D, Rancati F and Boano
L: Glivec and CML: A lucky date. J Biol Regul Homeost Agents.
18:246–251. 2004.PubMed/NCBI
|
6
|
Rashidi A, Weisdorf DJ and Bejanyan N:
Treatment of relapsed/refractory acute myeloid leukaemia in adults.
Br J Haematol. 181:27–37. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wu S, Huang J, Dong J and Pan D: Hippo
encodes a Ste-20 family protein kinase that restricts cell
proliferation and promotes apoptosis in conjunction with salvador
and warts. Cell. 114:445–456. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Harvey K and Tapon N: The
Salvador-Warts-Hippo pathway-an emerging tumour-suppressor network.
Nat Rev Cancer. 7:182–191. 2007. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Hong W and Guan KL: The YAP and TAZ
transcription co-activators: Key downstream effectors of the
mammalian Hippo pathway. Semin Cell Dev Biol. 23:785–793. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sansores-Garcia L, Atkins M, Moya IM,
Shahmoradgoli M, Tao C, Mills GB and Halder G: Mask is required for
the activity of the Hippo pathway effector Yki/YAP. Curr Biol.
23:229–235. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Couzens AL, Knight JD, Kean MJ, Teo G,
Weiss A, Dunham WH, Lin ZY, Bagshaw RD, Sicheri F, Pawson T, et al:
Protein interaction network of the mammalian Hippo pathway reveals
mechanisms of kinase-phosphatase interactions. Sci Signal.
6:rs152013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhao B, Li L, Lei Q and Guan KL: The
Hippo-YAP pathway in organ size control and tumorigenesis: An
updated version. Genes Dev. 24:862–874. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fernandez-L A, Squatrito M, Northcott P,
Awan A, Holland EC, Taylor MD, Nahlé Z and Kenney AM: Oncogenic YAP
promotes radio resistance and genomic instability in
medulloblastoma through IGF2-mediated Akt activation. Oncogene.
31:1923–1937. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cao JJ, Zhao XM, Wang DL, Chen KH, Sheng
X, Li WB, Li MC, Liu WJ and He J: YAP is overexpressed in clear
cell renal cell carcinoma and its knockdown reduces cell
proliferation and induces cell cycle arrest and apoptosis. Oncol
Rep. 32:1594–1600. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li X, Liu Y, Zhang C, Niu Q, Wang H, Che
C, Xie M, Zhou B, Xu Y, Zhang Q, et al: Stiehopusjaponieus acidic
mucopolysaccharide inhibits the proliferation of pancreatic cancer
SW1990 cells through Hippo-YAP pathway. Oncotarget. 8:16356–16366.
2017.PubMed/NCBI
|
16
|
Kim HM, Jung WH and Koo JS: Expression of
Yes-associated protein (YAP) in metastatic breast cancer. Int J
Clin Exp Pathol. 8:11248–11257. 2015.PubMed/NCBI
|
17
|
Pei T, Li Y, Wang J, Wang H, Liang Y, Shi
H, Sun B, Yin D, Sun J, Song R, et al: YAP is a critical oncogene
in human cholangiocarcinoma. Oncotarget. 6:17206–17220. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Gholami M, Mirfakhraie R, Movafagh A,
Jalaeekhoo H, Kalahroodi R, Zare-Abdollahi D and Zare-Karizi S: The
expression analysis of LATS2 gene in de novo AML patients. Med
Oncol. 31:9612014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ogawa S, Yokoyama Y, Suzukawa K, Nanmoku
T, Kurita N, Seki M, Maie K, Suyama T, Takaiwa N, Sakata-Yanagimoto
M, et al: Identification of a fusion gene composed of a Hippo
pathway gene MST2 and a common translocation partner ETV6 in a
recurrent translocation t(8;12)(q22;p13) in acute myeloid leukemia.
Ann Hematol. 94:1431–1433. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hill VK, Dunwell TL, Catchpoole D, Krex D,
Brini AT, Griffiths M, Craddock C, Maher ER and Latif F: Frequent
epigenetic inactivation of KIBRA, an upstream member of the
Salvador/Warts/Hippo (SWH) tumor suppressor network, is associated
with specific genetic event in B-cell acute lymphocytic leukemia.
Epigenetics. 6:326–332. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jiménez-Velasco A, Román-Gómez J, Agirre
X, Barrios M, Navarro G, Vázquez I, Prósper F, Torres A and
Heiniger A: Down regulation of the large tumor suppressor
2(LATS2/KPM) gene is associated with poor prognosis in acute
lymphoblastic leukemia. Leukemia. 19:2347–2350. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hartmann EM, Campo E, Wright G, Lenz G,
Salaverria I, Jares P, Xiao W, Braziel RM, Rimsza LM, Chan WC, et
al: Pathway discovery in mantle cell lymphoma by integrated
analysis of high-resolution gene expression and copy number
profiling. Blood. 116:953–961. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Garcia-Souza LF and Oliveira MF:
Mitochondria: Biological roles in platelet physiology and
pathology. Int J Biochem Cell Biol. 50:156–160. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Aqeilan RI: Hippo signaling: To die or not
to die. Cell Death Differ. 20:1287–1288. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kawahara M, Hori T, Chonabayashi K, Oka T,
Sudol M and Uchiyama T: Kpm/Lats2 is linked to chemosensitivity of
leukemic cells through the stabilization of p73. Blood.
112:3856–3866. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lapi E, Di Agostino S, Donzelli S, Gal H,
Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X and
Blandino G: PML, YAP, and p73 are components of aproapoptotic
autoregulatory feedback loop. Mol Cell. 32:803–814. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Strano S, Fausti F, Di Agostino S, Sudol M
and Blandino G: PML Surfs into HIPPO tumor suppressor pathway.
Front Oncol. 3:362013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim TS, Lee DH, Kim SK, Shin SY, Seo EJ
and Lim DS: Mammalian sterile 20-likekinase 1 suppresses lymphoma
development by promoting faithful chromosome segregation. Cancer
Res. 72:5386–5395. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Li H, Huang Z, Gao M, Huang N, Luo Z, Shen
H, Wang X, Wang T, Hu J and Feng W: Inhibition of YAP suppresses
CML cell proliferation and enhances efficacy of imatinib in vitro
and in vivo. J Exp Clin Cancer Res. 35:1342016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jansson L and Larsson J: Normal
hematopoietic stem cell function in mice with enforced expression
of the Hippo signaling effector YAP1. PLoS One. 7:e320132012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Machado-Neto JA, de Melo Campos P, Saad
Olalla ST and Traina F: YAP1 expression in myelodysplastic
syndromes and acute leukemias. Leuk Lymphoma. 55:2413–2415. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Cottini F, Hideshima T, Xu C, Sattler M,
Dori M, Agnelli L, Ten Hacken E, Bertilaccio MT, Antonini E, Neri
A, et al: Rescue of Hippo coactivator YAP1 triggers DNA
damage-induced apoptosis in hematological cancers. Nat Med.
20:599–606. 2014. View
Article : Google Scholar : PubMed/NCBI
|