1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pichler A, Fatouros C, Lee H and
Eisenhardt N: SUMO conjugation-a mechanistic view. Biomol Concepts.
8:13–36. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hay RT: SUMO: A history of modification.
Mol Cell. 18:1–12. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lee JS, Choi HJ and Baek SH: Sumoylation
and Its contribution to cancer. Adv Exp Med Biol. 963:283–298.
2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bellail AC, Olson JJ and Hao C: SUMO1
modification stabilizes CDK6 protein and drives the cell cycle and
glioblastoma progression. Nat Commun. 5:42342014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bonne-Andrea C, Kahli M, Mechali F,
Lemaitre JM, Bossis G and Coux O: SUMO2/3 modification of cyclin E
contributes to the control of replication origin firing. Nat
Commun. 4:18502013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hendriks IA, D'Souza RC, Yang B,
Verlaan-de Vries M, Mann M and Vertegaal AC: Uncovering global
SUMOylation signaling networks in a site-specific manner. Nat
Struct Mol Biol. 21:927–936. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Eifler K and Vertegaal ACO:
SUMOylation-mediated regulation of cell cycle progression and
cancer. Trends Biochem Sci. 40:779–793. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim KI and Baek SH: SUMOylation code in
cancer development and metastasis. Mol Cells. 22:247–253.
2006.PubMed/NCBI
|
10
|
Zhou Z, Wang M, Li J, Xiao M, Chin YE,
Cheng J, Yeh ET, Yang J and Yi J: SUMOylation and SENP3 regulate
STAT3 activation in head and neck cancer. Oncogene. 35:5826–5838.
2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Moschos SJ, Jukic DM, Athanassiou C,
Bhargava R, Dacic S, Wang X, Kuan SF, Fayewicz SL, Galambos C,
Acquafondata M, et al: Expression analysis of Ubc9, the single
small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in
normal and malignant tissues. Hum Pathol. 41:1286–1298. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhu S, Sachdeva M, Wu F, Lu Z and Mo YY:
Ubc9 promotes breast cell invasion and metastasis in a
sumoylation-independent manner. Oncogene. 29:1763–1772. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
He X, Riceberg J, Pulukuri SM, Grossman S,
Shinde V, Shah P, Brownell JE, Dick L, Newcomb J and Bence N:
Characterization of the loss of SUMO pathway function on cancer
cells and tumor proliferation. PLoS One. 10:e01238822015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Katayama A, Ogino T, Bandoh N, Takahara M,
Kishibe K, Nonaka S and Harabuchi Y: Overexpression of small
ubiquitin-related modifier-1 and sumoylated Mdm2 in oral squamous
cell carcinoma: Possible involvement in tumor proliferation and
prognosis. Int J Oncol. 31:517–524. 2007.PubMed/NCBI
|
15
|
Zhang D, Raasi S and Fushman D: Affinity
makes the difference: Nonselective interaction of the UBA domain of
Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. J
Mol Biol. 377:162–180. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Truong K, Lee TD, Li B and Chen Y:
Sumoylation of SAE2 C terminus regulates SAE nuclear localization.
J Biol Chem. 287:42611–42619. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Melo JB, Estevinho A, Saraiva J, Ramos L
and Carreira IM: Cutis Aplasia as a clinical hallmark for the
syndrome associated with 19q13.11 deletion: The possible role for
UBA2 gene. Mol Cytogenet. 8:212015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Venegas-Vega C, Nieto-Martinez K,
Martinez-Herrera A, Gómez-Laguna L, Berumen J, Cervantes A, Kofman
S and Fernández-Ramírez F: 19q13.11 microdeletion concomitant with
ins(2;19) (p25.3;q13.1q13.4)dn in a boy: Potential role of UBA2 in
the associated phenotype. Mol Cytogenet. 7:612014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li L, Liang D, Li JY and Zhao RY:
APOBEC3G-UBA2 fusion as a potential strategy for stable expression
of APOBEC3G and inhibition of HIV-1 replication. Retrovirology.
5:722008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tu J, Chen Y, Cai L, Xu C, Zhang Y, Chen
Y, Zhang C, Zhao J, Cheng J, Xie H, et al: Functional proteomics
study reveals SUMOylation of TFII-I is involved in liver cancer
cell proliferation. J Proteome Res. 14:2385–2397. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu X, Xu Y, Pang Z, Guo F, Qin Q, Yin T,
Sang Y, Feng C, Li X, Jiang L, et al: Knockdown of SUMO-activating
enzyme subunit 2 (SAE2) suppresses cancer malignancy and enhances
chemotherapy sensitivity in small cell lung cancer. J Hematol
Oncol. 8:672015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shao DF, Wang XH, Li ZY, Xing XF, Cheng
XJ, Guo T, Du H, Hu Y, Dong B, Ding N, et al: High-level SAE2
promotes malignant phenotype and predicts outcome in gastric
cancer. Am J Cancer Res. 5:140–154. 2014.PubMed/NCBI
|
23
|
Torres S, Garcia-Palmero I, Bartolomé RA,
Fernandez-Aceñero MJ, Molina E, Calviño E, Segura MF and Casal JI:
Combined miRNA profiling and proteomics demonstrates that different
miRNAs target a common set of proteins to promote colorectal cancer
metastasis. J Pathol. 242:39–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li JH, Liu S, Zhou H, Qu LH and Yang JH:
starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res. 42:D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yang JH, Li JH, Shao P, Zhou H, Chen YQ
and Qu LH: starBase: A database for exploring microRNA-mRNA
interaction maps from Argonaute CLIP-Seq and Degradome-Seq data.
Nucleic Acids Res. 39:D202–D209. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Bogachek MV, Park JM, De Andrade JP,
Lorenzen AW, Kulak MV, White JR, Gu VW, Wu VT and Weigel RJ:
Inhibiting the SUMO pathway represses the cancer stem cell
population in breast and colorectal carcinomas. Stem Cell Reports.
7:1140–1151. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tomasi ML, Ryoo M, Ramani K, Tomasi I,
Giordano P, Mato JM and Lu SC: Methionine adenosyltransferase α2
sumoylation positively regulate Bcl-2 expression in human colon and
liver cancer cells. Oncotarget. 6:37706–37723. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Okuma T, Honda R, Ichikawa G, Tsumagari N
and Yasuda H: In vitro SUMO-1 modification requires two enzymatic
steps, E1 and E2. Biochem Biophys Res Commun. 254:693–698. 1999.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Sawyer JR: The prognostic significance of
cytogenetics and molecular profiling in multiple myeloma. Cancer
Genet. 204:3–12. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhu ZZ, Wang D, Cong WM, Jiang H, Yu Y,
Wen BJ, Dong H, Zhang X, Liu SF, Wang AZ, et al: Sex-related
differences in DNA copy number alterations in hepatitis B
virus-associated hepatocellular carcinoma. Asian Pac J Cancer Prev.
13:225–229. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Naz RK and Dhandapani L: Identification of
human sperm proteins that interact with human zona pellucida3 (ZP3)
using yeast two-hybrid system. J Reprod Immunol. 84:24–31. 2010.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Chai R, Yu X, Tu S and Zheng B: Depletion
of UBA protein 2-like protein inhibits growth and induces apoptosis
of human colorectal carcinoma cells. Tumour Biol. 37:13225–3522.
2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Atherton-Fessler S, Liu F, Gabrielli B,
Lee MS, Peng CY and Piwnica-Worms H: Cell cycle regulation of the
p34cdc2 inhibitory kinases. Mol Biol Cell. 5:989–1001. 1994.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Pestell RG, Albanese C, Reutens AT, Segall
JE, Lee RJ and Arnold A: The cyclins and cyclin-dependent kinase
inhibitors in hormonal regulation of proliferation and
differentiation. Endocr Rev. 20:501–534. 1999. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lloyd RV, Erickson LA, Jin L, Kulig E,
Qian X, Cheville JC and Scheithauer BW: p27kip1: A multifunctional
cyclin-dependent kinase inhibitor with prognostic significance in
human cancers. Am J Pathol. 154:313–323. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kontos CK, Christodoulou MI and Scorilas
A: Apoptosis-related BCL2-family members: Key players in
chemotherapy. Anticancer Agents Med Chem. 14:353–374. 2014.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Carnero A, Blanco-Aparicio C, Renner O,
Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer,
therapeutic implications. Curr Cancer Drug Targets. 8:187–198.
2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Pant V, Xiong S, Iwakuma T,
Quintás-Cardama A and Lozano G: Heterodimerization of Mdm2 and Mdm4
is critical for regulating p53 activity during embryogenesis but
dispensable for p53 and Mdm2 stability. Proc Natl Acad Sci USA.
108:11995–12000. 2011. View Article : Google Scholar : PubMed/NCBI
|