1
|
Klein R and Klein BE: The prevalence of
age-related eye diseases and visual impairment in aging: Current
estimates. Invest Ophthalmol Vis Sci. 54:ORSF5–ORSF13. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Jermak CM, Dellacroce JT, Hefez J and
Peyman GA: Triam cinolone acetonide in ocular therapeutics. Surv
Ophthalmol. 52:503–522. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yu CC, Nandrot EF, Ying D and Finnemann
SC: Dietary antioxidants prevent age-related retinal pigment
epithelium actin damage and blindness in mice lacking αvβ5
integrin. Free Radic Biol Med. 52:660–670. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Khandhadia S and Lotery A: Oxidation and
age-related macular degeneration: Insights from molecular biology.
Expert Rev Mol Med. 12:e342010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jarrett S G and Boulton ME: Consequences
of oxidative stress in age-related macular degeneration. Mol
Aspects Med. 33:399–417. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mettu PS, Wielgus AR, Ong SS and Cousins
SW: Retinal pigment epithelium response to oxidant injury in the
pathogenesis of early age-related macular degeneration. Mol Aspects
Med. 33:376–398. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Golestaneh N, Chu Y, Xiao YY, Stoleru GL
and Theos AC: Dysfunctional autophagy in RPE, a contributing factor
in age-related macular degeneration. Cell Death Dis. 8:e25372017.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bailey TA, Kanuga N, Romero IA, Greenwood
J, Luthert PJ and Cheetham ME: Oxidative stress affects the
junctional integrity of retinal pigment epithelial cells. Invest
Ophthalmol Vis Sci. 45:675–684. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Strunnikova N, Zhang C, Teichberg D,
Cousins SW, Baffi J, Becker KG and Csaky KG: Survival of retinal
pigment epithelium after exposure to prolonged oxidative injury: A
detailed gene expression and cellular analysis. Invest Ophthalmol
Vis Sci. 45:3767–3777. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mailloux RJ and Harper ME: Uncoupling
proteins and the control of mitochondrial reactive oxygen species
production. Free Radic Biol Med. 51:1106–1105. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Collins S, Pi J and Yehuda-Shnaidman E:
Uncoupling and reactive oxygen species (ROS)-A double-edged sword
for β-cell function? ‘Moderation in all things’. Best Pract Res
Clin Endocrinol Metab. 26:753–758. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Casteilla L, Rigoulet M and Pénicaud L:
Mitochondrial ROS metabolism: Modulation by uncoupling proteins.
IUBMB Life. 52:181–188. 2010. View Article : Google Scholar
|
13
|
Andrews ZB, Horvath B, Barnstable CJ,
Elsworth J, Yang L, Beal MF, Roth RH, Matthews RT and Horvath TL:
Uncoupling protein-2 is critical for nigral dopamine cell survival
in a mouse model of Parkinson's disease. J Neurosci. 25:184–191.
2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Trenker M, Malli R, Fertschai I,
Levakfrank S and Graier WF: Uncoupling proteins 2 and 3 are
fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol.
9:445–452. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Diano S and Horvath TL: Mitochondrial
uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends
Mol Med. 18:52–58. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sluse FE: Uncoupling proteins: Molecular,
functional, regulatory, physiological and pathological aspects. Adv
Exp Med Biol. 942:137–156. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cardoso S, Correia S, Carvalho C, Candeias
E, Plácido AI, Duarte AI, Seiça RM and Moreira PI: Perspectives on
mitochondrial uncoupling proteins-mediated neuroprotection. J
Bioenerg Biomembr. 47:119–131. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chan SH, Wu CA, Wu KL, Ho YH, Chang AY and
Chan JY: Transcriptional upregulation of mitochondrial uncoupling
protein 2 protects against oxidative stress-associated neurogenic
hypertension. Circ Res. 105:886–896. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Arsenijevic D, Onuma H, Pecqueur C,
Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC,
Goubern M, Surwit R, et al: Disruption of the uncoupling protein-2
gene in mice reveals a role in immunity and reactive oxygen species
production. Nat Genet. 26:435–439. 2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
Donadelli M, Dando I, Fiorini C and
Palmieri M: UCP2, a mitochondrial protein regulated at multiple
levels. Cell Mol Life Sci. 71:1171–1190. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Duh EJ, Yang HS, Haller JA, De Juan E,
Humayun MS, Gehlbach P, Melia M, Pieramici D, Harlan JB,
Campochiaro PA and Zack DJ: Vitreous levels of pigment
epithelium-derived factor and vascular endothelial growth factor:
Implications for ocular angiogenesis. Am J Ophthalmol. 137:668–674.
2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Holekamp NM, Bouck N and Volpert O:
Pigment epithelium-derived factor is deficient in the vitreous of
patients with choroidal neovascularization due to age-related
macular degeneration. Am J Ophthalmol. 134:220–227. 2002.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ogata N, Matsuoka M, Imaizumi M, Arichi M
and Matsumura M: Decreased levels of pigment epithelium-derived
factor in eyes with neuroretinal dystrophic diseases. Am J
Ophthalmol. 137:1129–1130. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Becerra SP, Dass CR, Yabe T and Crawford
SE: Pigment epithelium-derived factor: Chemistry, structure,
biology, and applications. J Biomed Biotechnol. 2012:8309752012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Karakousis PC, John SK, Behling KC, Surace
EM, Smith JE, Hendrickson A, Tang WX, Bennett J and Milam AH:
Localization of pigment epithelium derived factor (PEDF) in
developing and adult human ocular tissues. Mol Vis. 7:154–163.
2001.PubMed/NCBI
|
26
|
Kozulin P, Natoli R, Bumsted O'Brien KM,
Madigan MC and Provis JM: The cellular expression of antiangiogenic
factors in fetal primate macula. Invest Ophthalmol Vis Sci.
51:4298–4306. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Becerra SP, Fariss RN, Wu YQ, Montuenga
LM, Wong P and Pfeffer BA: Pigment epithelium-derived factor in the
monkey retinal pigment epithelium and interphotoreceptor matrix:
Apical secretion and distribution. Exp Eye Res. 78:223–234. 2004.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Perez-Mediavilla LA, Chew C, Campochiaro
PA, Nickells RW, Notario V, Zack DJ and Becerra SP: Sequence and
expression analysis of bovine pigment epithelium-derived factor.
Biochim Biophys Acta. 1398:203–214. 1998. View Article : Google Scholar : PubMed/NCBI
|
29
|
He Y, Leung KW, Ren Y, Pei J, Ge J and
Tombran-Tink J: PEDF improves mitochondrial function in RPE cells
during oxidative stress. Invest Ophthalmol Vis Sci. 55:6742–6755.
2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wankun X, Wenzhen Y, Min Z, Weiyan Z, Huan
C, Wei D, Lvzhen H, Xu Y and Xiaoxin L: Protective effect of
paeoniflorin against oxidative stress in human retinal pigment
epithelium in vitro. Mol Vis. 17:3512–3522. 2011.PubMed/NCBI
|
31
|
Tsao YP, Ho TC, Chen SL and Cheng HC:
Pigment epithelium-derived factor inhibits oxidative stress-induced
cell death by activation of extracellular signal-regulated kinases
in cultured retinal pigment epithelial cells. Life Sci. 79:545–550.
2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR a nd
the 2(-Delta Delta C(T)) method. Method. 25:402–408. 2001.
View Article : Google Scholar
|
33
|
Yang WQ, Sun DD, Zhao T, Ren DQ and Guo
GZ: Effects of erythrocyte relative chemo-luminescence intensities
induced by H2O2 in mice exposed to EMP. Environmental
Electromagnetics, the 2006 Asia-Pacific Conference. Proceedings of
a meeting held 1-4 August 2006 Dalian, China: pp. 91–94. 2006
|
34
|
Huang Q, Wang S, Sorenson CM and Sheibani
N: PEDF-deficient mice exhibit an enhanced rate of retinal vascular
expansion and are more sensitive to hyperoxia-mediated vessel
obliteration. Exp Eye Res. 87:226–241. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wu WC, Hu DN, Gao HX, Chen M, Wang D,
Rosen R and McCormick SA: Subtoxic levels hydrogen peroxide-induced
production of interleukin-6 by retinal pigment epithelial cells.
Mol Vis. 16:1864–1873. 2010.PubMed/NCBI
|
36
|
Kaczara P, Sarna T and Burke JM: Dynamics
of H2O2 availability to ARPE-19 cultures in models of oxidative
stress. Free Radic Biol Med. 48:1064–1070. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Weigel AL, Handa JT and Hjelmeland LM:
Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells.
Free Radic Biol Med. 33:1419–1432. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bailey TA, Kanuga N, Romero IA, Greenwood
J, Luthert PJ and Cheetham ME: Oxidative stress affects the
junctional integrity of retinal pigment epithelial cells. Invest
Ophthalmol Vis Sci. 45:675–684. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hanus J, Anderson C and Wang S: RPE
necroptosis in response to oxidative stress and in AMD. Ageing Res
Rev. 24:286–298. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Jarrett SG and Boulton ME: Consequences of
oxidative stress in age-related macular degeneration. Mol Aspects
Med. 33:399–417. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Querques G, Rosenfeld PJ, Cavallero E,
Borrelli E, Corvi F, Querques L, Bandello FM and Zarbin MA:
Treatment of dry age-related macular degeneration. Ophthalmic Res.
52:107–115. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Aksenov MY, Aksenova MV, Butterfield DA,
Geddes JW and Markesbery WR: Protein oxidation in the brain in
Alzheimer's disease. Neuroscience. 103:373–383. 2001. View Article : Google Scholar : PubMed/NCBI
|
43
|
Adams JD Jr, Chang ML and Klaidman L:
Parkinson's disease-redox mechanisms. Curr Med Chem. 8:809–814.
2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Age-Related Eye Disease Study Research
Group: A randomized, placebo-controlled, clinical trial of
high-dose supplementation with vitamins C and E, beta carotene and
zinc for age-related macular degeneration and vision loss. AREDS
report no. 9. Arch Ophthalmol. 119:1439–1452. 2001. View Article : Google Scholar
|
45
|
Yuan H, Jian G, Burke JM, Myers RL, Dong
ZZ and Tombran-Tink J: Mitochondria impairment correlates with
increased sensitivity of aging RPE cells to oxidative stress. J
Ocul Biol Dis Infor. 3:92–108. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
He Y and Tombran-Tink J: Mitochondrial
decay and impairment of antioxidant defenses in aging RPE cells.
Adv Exp Med Biol. 664:165–183. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Barnstable CJ, Reddy R, Li H and Horvath
TL: Mitochondrial uncoupling protein 2 (UCP2) regulates retinal
ganglion cell number and survival. J Mol Neurosci. 58:461–469.
2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Barnstable CJ and Tombran-Tink J:
Neuroprotective and antiangiogenic actions of PEDF in the eye:
Molecular targets and therapeutic potential. Prog Retin Eye Res.
23:561–577. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Becerra SP: Focus on molecules: Pigment
epithelium-derived factor (PEDF). Exp Eye Res. 82:739–740. 2006.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Bouck N: PEDF: Anti-angiogenic guardian of
ocular function. Trends Mol Med. 8:330–334. 2002. View Article : Google Scholar : PubMed/NCBI
|
51
|
Subramanian P, Locatelli-Hoops S, Kenealey
J, Desjardin J, Notari L and Becerra SP: Pigment epithelium-derived
factor (PEDF) prevents retinal cell death via PEDF receptor
(PEDF-R): Identification of a functional ligand binding site. J
Biol Chem. 288:23928–23942. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Geiger RC, Waters CM, Kamp DW and
Glucksberg MR: KGF prevents oxygen-mediated damage in ARPE-19
cells. Invest Ophthalmol Vis Sci. 46:3435–3442. 2005. View Article : Google Scholar : PubMed/NCBI
|
53
|
Subramanian P, Mendez EF and Becerra SP: A
novel inhibitor of 5-Lipoxygenase (5-LOX) prevents oxidative
stress-induced cell death of retinal pigment epithelium (RPE)
cells. Invest Ophthalmol Vis Sci. 57:4581–4588. 2016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Yao S, Zhang Y, Wang X, Zhao F, Sun M,
Zheng X, Dong H and Guo K: Pigment epithelium-derived factor (PEDF)
protects osteoblastic cell line from glucocorticoid-induced
apoptosis via PEDF-R. Int J Mol Sci. 17(pii): E7302016. View Article : Google Scholar : PubMed/NCBI
|
55
|
Ma S, Yao S, Hua T, Jiao P, Yang N, Zhu P
and Qin S: Pigment epithelium-derived factor alleviates endothelial
injury by inhibiting Wnt/β-catenin pathway. Lipids Health Dis.
16:312017. View Article : Google Scholar : PubMed/NCBI
|