1
|
Wooten K: Clinical features and
electrodiagnosis of diabetic peripheral neuropathy in the
dysvascular patient. Phys Med Rehabil Clin N Am. 20:657–676. 2009.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Tesfaye S and Selvarajah D: Advances in
the epidemiology, pathogenesis and management of diabetic
peripheral neuropathy. Diabetes Metab Res Rev. 28 Suppl 1:S8–S14.
2012. View Article : Google Scholar
|
3
|
Sima AA: Diabetic neuropathy: Pathogenetic
background, current and future therapies. Expert Rev Neurother.
1:225–238. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sima AA, Bril V, Nathaniel V, McEwen TA,
Brown MB, Lattimer SA and Greene DA: Regeneration and repair of
myelinated fibers in sural-nerve biopsy specimens from patients
with diabetic neuropathy treated with sorbinil. N Engl J Med.
319:548–555. 1988. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ziegler D, Reljanovic M, Mehnert H and
Gries FA: Alpha-lipoic acid in the treatment of diabetic
polyneuropathy in Germany: Current evidence from clinical trials.
Exp Clin Endocrinol Diabetes. 107:421–430. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Flanagan JL, Simmons PA, Vehige J, Willcox
MD and Garrett Q: Role of carnitine in disease. Nutr Metab (Lond).
7:302010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Salmanoglu DS, Gurpinar T, Vural K,
Ekerbicer N, Dariverenli E and Var A: Melatonin and L-carnitin
improves endothelial disfunction and oxidative stress in Type 2
diabetic rats. Redox Biol. 8:199–204. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ido Y, McHowat J, Chang KC,
Arrigoni-Martelli E, Orfalian Z, Kilo C, Corr PB and Williamson JR:
Neural dysfunction and metabolic imbalances in diabetic rats.
Prevention by acetyl-L-carnitine. Diabetes. 43:1469–1477. 1994.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Bach AC: Carnitine in human nutrition. Z
Ernahrungswiss. 21:257–265. 1982. View Article : Google Scholar : PubMed/NCBI
|
10
|
Evans JD, Jacobs TF and Evans EW: Role of
acetyl-L-carnitine in the treatment of diabetic peripheral
neuropathy. Ann Pharmacother. 42:1686–1691. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sima AA: Acetyl-L-carnitine in diabetic
polyneuropathy: Experimental and clinical data. CNS Drugs. 21 Suppl
1:13–23. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Stevens MJ, Lattimer SA, Feldman EL,
Helton ED, Millington DS, Sima AA and Greene DA: Acetyl-L-carnitine
deficiency as a cause of altered nerve myo-inositol content, Na,
K-ATPase activity and motor conduction velocity in the
streptozotocin-diabetic rat. Metabolism. 45:865–872. 1996.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Lowitt S, Malone JI, Salem AF, Korthals J
and Benford S: Acetyl-L-carnitine corrects the altered peripheral
nerve function of experimental diabetes. Metabolism. 44:677–680.
1995. View Article : Google Scholar : PubMed/NCBI
|
14
|
Onofrj M, Fulgente T, Melchionda D,
Marchionni A, Tomasello F, Salpietro FM, Alafaci C, De Sanctis E,
Pennisi G, Bella R, et al: L-acetylcarnitine as a new therapeutic
approach for peripheral neuropathies with pain. Int J Clin
Pharmacol Res. 15:9–15. 1995.PubMed/NCBI
|
15
|
Quatraro A, Roca P, Donzella C, Acampora
R, Marfella R and Giugliano D: Acetyl-L-carnitine for symptomatic
diabetic neuropathy. Diabetologia. 38:1231995. View Article : Google Scholar : PubMed/NCBI
|
16
|
Scarpini E, Sacilotto G, Baron P, Cusini M
and Scarlato G: Effect of acetyl-L-carnitine in the treatment of
painful peripheral neuropathies in HIV+ patients. J Peripher Nerv
Syst. 2:250–252. 1997.PubMed/NCBI
|
17
|
Sima AA, Calvani M, Mehra M and Amato A;
Acetyl-L-Carnitine Study Group: Acetyl-L-carnitine improves pain,
nerve regeneration, and vibratory perception in patients with
chronic diabetic neuropathy: An analysis of two randomized
placebo-controlled trials. Diabetes Care. 28:89–94. 2005.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Rajpathak SN, He M, Sun Q, Kaplan RC,
Muzumdar R, Rohan TE, Gunter MJ, Pollak M, Kim M, Pessin JE, et al:
Insulin-like growth factor axis and risk of type 2 diabetes in
women. Diabetes. 61:2248–2254. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pires KM, Buffolo M, Schaaf C, David
Symons J, Cox J, Abel ED, Selzman CH and Boudina S: Activation of
IGF-1 receptors and Akt signaling by systemic hyperinsulinemia
contributes to cardiac hypertrophy but does not regulate cardiac
autophagy in obese diabetic mice. J Mol Cell Cardiol. 113:39–50.
2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kanazawa I, Notsu M, Miyake H, Tanaka K
and Sugimoto T: Assessment using serum insulin-like growth factor-I
and bone mineral density is useful for detecting prevalent
vertebral fractures in patients with type 2 diabetes mellitus.
Osteoporosis Int. 29:2527–2535. 2018. View Article : Google Scholar
|
21
|
Cao LH, Lu FM, Lu XJ and Zhu LY: Study on
the relationship between insulin growth factor 1 and liver fibrosis
in patients with chronic hepatitis C with type 2 diabetes mellitus.
J Cell Biochem. 119:9513–9518. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dai C, Li N, Song G, Yang Y and Ning X:
Insulin-like growth factor 1 regulates growth of endometrial
carcinoma through PI3k signaling pathway in insulin-resistant type
2 diabetes. Am J Transl Res. 8:3329–3336. 2016.PubMed/NCBI
|
23
|
Hjortebjerg R, Laugesen E, Høyem P, Oxvig
C, Stausbøl-Grøn B, Knudsen ST, Kim WY, Poulsen PL, Hansen TK,
Bjerre M and Frystyk J: The IGF system in patients with type 2
diabetes: Associations with markers of cardiovascular target organ
damage. Eur J Endocrinol. 176:521–531. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Katz LE, DeLeón DD, Zhao H and Jawad AF:
Free and total insulin-like growth factor (IGF)-I levels decline
during fasting: Relationships with insulin and IGF-binding
protein-1. J Clin Endocrinol Metab. 87:2978–2983. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ge P, Cui Y, Liu F, Luan J, Zhou X and Han
J: L-carnitine affects osteoblast differentiation in NIH3T3
fibroblasts by the IGF-1/PI3K/Akt signalling pathway. Biosci
Trends. 9:42–48. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Keller J, Couturier A, Haferkamp M, Most E
and Eder K: Supplementation of carnitine leads to an activation of
the IGF-1/PI3 K/Akt signalling pathway and down regulates the E3
ligase MuRF1 in skeletal muscle of rats. Nutr Metab (Lond).
10:282013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xia Y, Li Q, Zhong W, Dong J, Wang Z and
Wang C: L-carnitine ameliorated fatty liver in high-calorie
diet/STZ-induced type 2 diabetic mice by improving mitochondrial
function. Diabetol Metab Syndr. 3:312011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Reed MJ, Meszaros K, Entes LJ, Claypool
MD, Pinkett JG, Gadbois TM and Reaven GM: A new rat model of type 2
diabetes: the fat-fed, streptozotocin-treated rat. Metabolism.
49:1390–1394. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cao Y, Wang YX, Liu CJ, Wang LX, Han ZW
and Wang CB: Comparison of pharmacokinetics of L-carnitine,
acetyl-L-carnitine and propionyl-L-carnitine after single oral
administration of L-carnitine in healthy volunteers. Clin Invest
Med. 32:E13–E19. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tisi A, Federico R, Moreno S, Lucretti S,
Moschou PN, Roubelakis-Angelakis KA, Angelini R and Cona A:
Perturbation of polyamine catabolism can strongly affect root
development and xylem differentiation. Plant Physiol. 157:200–215.
2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
De Palo E, Gatti R, Sicolo N, Padovan D,
Vettor R and Federspil G: Plasma and urine free L-carnitine in
human diabetes mellitus. Acta Diabetol Lat. 18:91–95. 1981.
View Article : Google Scholar : PubMed/NCBI
|
32
|
McGeoch SC, Holtrop G, Fyfe C, Lobley GE,
Pearson DW, Abraham P, Megson IL, Macrury SM and Johnstone AM: Food
intake and dietary glycaemic index in free-living adults with and
without type 2 diabetes mellitus. Nutrients. 3:683–693. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Hur J, Dauch JR, Hinder LM, Hayes JM,
Backus C, Pennathur S, Kretzler M, Brosius FC III and Feldman EL:
The metabolic syndrome and microvascular complications in a murine
model of type 2 diabetes. Diabetes. 64:3294–3304. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ding Y, Dai X, Zhang Z, Jiang Y, Ma X, Cai
X and Li Y: Proanthocyanidins protect against early diabetic
peripheral neuropathy by modulating endoplasmic reticulum stress. J
Nutr Biochem. 25:765–772. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Srinivasan K and Ramarao P: Animal models
in type 2 diabetes research: An overview. Indian J Med Res.
125:451–472. 2007.PubMed/NCBI
|
36
|
Li S, Chen X, Li Q, Du J, Liu Z, Peng Y,
Xu M, Li Q, Lei M, Wang C, et al: Effects of acetyl-L-carnitine and
methylcobalamin for diabetic peripheral neuropathy: A multicenter,
randomized, double-blind, controlled trial. J Diabetes Investig.
7:777–785. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Fagher B, Cederblad G, Eriksson M, Monti
M, Moritz U, Nilsson-Ehle P and Thysell H: L-carnitine and
haemodialysis: Double blind study on muscle function and metabolism
and peripheral nerve function. Scand J Clin Lab Invest. 45:169–178.
1985. View Article : Google Scholar : PubMed/NCBI
|
38
|
Arioz DT, Kanat-Pektas M, Tuncer N, Koken
T, Unlu BS, Koken G and Yilmazer M: L-Carnitine: A new insight into
the pathogenesis of endometrial cancer. Arch Gynecol Obstet.
291:1147–1152. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang M, Lv XY, Li J, Xu ZG and Chen L:
The characterization of high-fat diet and multiple low-dose
streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res.
2008:7040452008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Jolivalt CG, Frizzi KE, Guernsey L,
Marquez A, Ochoa J, Rodriguez M and Calcutt NA: Peripheral
neuropathy in mouse models of diabetes. Curr Protoc Mouse Biol.
6:223–255. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Drel VR, Mashtalir N, Ilnytska O, Shin J,
Li F, Lyzogubov VV and Obrosova IG: The leptin-deficient (ob/ob)
mouse: A new animal model of peripheral neuropathy of type 2
diabetes and obesity. Diabetes. 55:3335–3343. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ohsawa M, Miyata S, Carlsson A and Kamei
J: Preventive effect of acetyl-L-carnitine on the thermal
hypoalgesia in streptozotocin-induced diabetic mice. Eur J
Pharmacol. 588:213–216. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Calcutt NA, Freshwater JD and Mizisin AP:
Prevention of sensory disorders in diabetic Sprague-Dawley rats by
aldose reductase inhibition or treatment with ciliary neurotrophic
factor. Diabetologia. 47:718–724. 2004. View Article : Google Scholar : PubMed/NCBI
|
44
|
Malik RA: Pathology of human diabetic
neuropathy. Handb Clin Neurol. 126:249–259. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Dyck PJ and Giannini C: Pathologic
alterations in the diabetic neuropathies of humans: A review. J
Neuropathol Exp Neurol. 55:1181–1193. 1996. View Article : Google Scholar : PubMed/NCBI
|
46
|
Dimitriadis G, Mitrou P, Lambadiari V,
Maratou E and Raptis SA: Insulin effects in muscle and adipose
tissue. Diabetes Res Clin Pract. 93 Suppl 1:S52–S59. 2011.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Simpson HL, Jackson NC, Shojaee-Moradie F,
Jones RH, Russell-Jones DL, Sönksen PH, Dunger DB and Umpleby AM:
Insulin-like growth factor I has a direct effect on glucose and
protein metabolism, but no effect on lipid metabolism in type 1
diabetes. J Clin Endocrinol Metab. 89:425–432. 2004. View Article : Google Scholar : PubMed/NCBI
|
48
|
de la Hoz CL, Cheng C, Fernyhough P and
Zochodne DW: A model of chronic diabetic polyneuropathy: Benefits
from intranasal insulin are modified by sex and RAGE deletion. Am J
Physiol Endocrinol Metab. 312:E407–E419. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kamiya H, Zhang W and Sima AA: The
beneficial effects of C-Peptide on diabetic polyneuropathy. Rev
Diabet Stud. 6:187–202. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Gao T, Bogdanova N, Ghauri S, Zhang G, Lin
J and Sheikh K: Systemic IGF-1 gene delivery by rAAV9 improves
spontaneous autoimmune peripheral polyneuropathy (SAPP). Sci Rep.
8:54082018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Fernyhough P, Willars GB, Lindsay RM and
Tomlinson DR: Insulin and insulin-like growth factor I enhance
regeneration in cultured adult rat sensory neurones. Brain Res.
607:117–124. 1993. View Article : Google Scholar : PubMed/NCBI
|
52
|
Near SL, Whalen LR, Miller JA and Ishii
DN: Insulin-like growth factor II stimulates motor nerve
regeneration. Proc Natl Acad Sci USA. 89:11716–11720. 1992.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Chang YM, Kuo WH, Lai TY, Shih YT, Tsai
FJ, Tsai CH, Shu WT, Chen YY, Chen YS, Kuo WW and Huang CY: RSC96
schwann cell proliferation and survival induced by dilong through
PI3K/Akt signaling mediated by IGF-I. Evid Based Complement
Alternat Med. 2011:2161482011. View Article : Google Scholar : PubMed/NCBI
|