1
|
Chaplin DD: Overview of the immune
response. J Allergy Clin Immunol. 125((2 Suppl 2)): S3–S23. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Jeong YH, Oh YC, Cho WK, Yim NH and Ma JY:
Anti-inflammatory effect of rhapontici radix ethanol extract via
inhibition of NF-kB and MAPK and induction of HO-1 in macrophages.
Mediators Inflamm. 2016:72169122016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kaminska B: MAPK signalling pathways as
molecular targets for anti-inflammatory therapy-from molecular
mechanisms to therapeutic benefits. Biochim Biophys Acta.
1754:253–262. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hewagama A and Richardson B: The genetics
and epigenetics of autoimmune diseases. J Autoimmun. 33:3–11. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Alberga D, Trisciuzzi D, Lattanzi G,
Bennett JL, Verkman AS, Mangiatordi GF and Nicolotti O: Comparative
molecular dynamics study of neuromyelitis optica-immunoglobulin G
binding to aquaporin-4 extracellular domains. Biochim Biophys Acta.
1859:1326–1334. 2017. View Article : Google Scholar :
|
6
|
Park SJ, Jeong IH, Kong BS, Lee JE, Kim
KH, Lee DY and Kim HJ: Disease type- and status-specific alteration
of CSF metabolome coordinated with clinical parameters in
inflammatory demyelinating diseases of CNS. PLoS One.
11:e01662772016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kim HH, Jeong IH, Hyun JS, Kong BS, Kim HJ
and Park SJ: Metabolomic profiling of CSF in multiple sclerosis and
neuromyelitis optica spectrum disorder by nuclear magnetic
resonance. PLoS One. 12:e01817582017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Samuvel DJ, Sundararaj KP, Nareika A,
Lopes-Virella MF and Huang Y: Lactate boosts TLR4 signaling and
NF-kappaB pathway-mediated gene transcription in macrophages via
monocarboxylate transporters and MD-2 up-regulation. J Immunol.
182:2476–2484. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pucino V, Bombardieri M, Pitzalis C and
Mauro C: Lactate at the crossroads of metabolism, inflammation, and
autoimmunity. Eur J Immunol. 47:14–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hirschhaeuser F, Sattler UG and
Mueller-Klieser W: Lactate: A metabolic key player in cancer.
Cancer Res. 71:6921–6925. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Le A, Cooper CR, Gouw AM, Dinavahi R,
Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL and Dang
CV: Inhibition of lactate dehydrogenase A induces oxidative stress
and inhibits tumor progression. Proc Natl Acad Sci USA.
107:2037–2042. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Miao P, Sheng S, Sun X, Liu J and Huang G:
Lactate dehydrogenase A in cancer: A promising target for diagnosis
and therapy. IUBMB Life. 65:904–910. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Scheijen JL, Hanssen NM, van de Waarenburg
MP, Jonkers DM, Stehouwer CD and Schalkwijk CG: L(+) and D(−)
lactate are increased in plasma and urine samples of type 2
diabetes as measured by a simultaneous quantification of L(+) and
D(−) lactate by reversed-phase liquid chromatography tandem mass
spectrometry. Exp Diabetes Res. 2012:2348122012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Doherty JR and Cleveland JL: Targeting
lactate metabolism for cancer therapeutics. J Clin Invest.
123:3685–3692. 2013. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Rellinger EJ, Craig BT, Alvarez AL, Dusek
HL, Kim KW, Qiao J and Chung DH: FX11 inhibits aerobic glycolysis
and growth of neuroblastoma cells. Surgery. 161:747–752. 2017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Park JY, Pillinger MH and Abramson SB:
Prostaglandin E2 synthesis and secretion: The role of PGE2
synthases. Clin Immunol. 119:229–240. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao Y, Vanhoutte PM and Leung SW:
Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci. 129:83–94.
2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou HY, Shin EM, Guo LY, Youn UJ, Bae K,
Kang SS, Zou LB and Kim YS: Anti-inflammatory activity of
4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2
expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK
inactivation. Eur J Pharmacol. 586:340–349. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Andersen LW, Mackenhauer J, Roberts JC,
Berg KM, Cocchi MN and Donnino MW: Etiology and therapeutic
approach to elevated lactate levels. Mayo Clin Proc. 88:1127–1140.
2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fantin VR, St-Pierre J and Leder P:
Attenuation of LDH-A expression uncovers a link between glycolysis,
mitochondrial physiology, and tumor maintenance. Cancer Cell.
9:425–434. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xie H, Valera VA, Merino MJ, Amato AM,
Signoretti S, Linehan WM, Sukhatme VP and Seth P: LDH-A inhibition,
a therapeutic strategy for treatment of hereditary leiomyomatosis
and renal cell cancer. Mol Cancer Ther. 8:626–635. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jeong DH, Kim KB, Kim MJ, Kang BK and Ahn
DH: Skipjack tuna (Katsuwonus pelamis) eyeball oil exerts an
anti-inflammatory effect by inhibiting NF-kB and MAPK activation in
LPS-induced RAW 264.7 cells and croton oil-treated mice. Int
Immunopharmacol. 40:50–56. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Newton K and Dixit VM: Signaling in innate
immunity and inflammation. Cold Spring Harb Perspect Biol. 4(pii):
a0060492012.PubMed/NCBI
|
25
|
Sun J, Ramnath RD, Zhi L, Tamizhselvi R
and Bhatia M: Substance P enhances NF-kappaB transactivation and
chemokine response in murine macrophages via ERK1/2 and p38 MAPK
signaling pathways. Am J Physiol Cell Physiol. 294:C1586–C1596.
2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang Y, Kim SC, Yu T, Yi YS, Rhee MH, Sung
GH, Yoo BC and Cho JY: Functional roles of p38 mitogen-activated
protein kinase in macrophage-mediated inflammatory responses.
Mediators Inflamm. 2014:3523712014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Herlaar E and Brown Z: p38 MAPK signalling
cascades in inflammatory disease. Mol Med Today. 5:439–447. 1999.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zarubin T and Han J: Activation and
signaling of the p38 MAP kinase pathway. Cell Res. 15:11–18. 2005.
View Article : Google Scholar : PubMed/NCBI
|