1
|
Spiltoir JI, Stratton MS, Cavasin MA,
Demos-Davies K, Reid BG, Qi J, Bradner JE and McKinsey TA: BET
acetyl-lysine binding proteins control pathological cardiac
hypertrophy. J Mol Cell Cardiol. 63:175–179. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Roger VL, Go AS, Lloyd-Jones DM, Benjamin
EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, et al:
Heart disease and stroke statistics-2012 update: A report from the
American Heart Association. Circulation. 125:e2–e220.
2012.PubMed/NCBI
|
3
|
Gao Q, Guan L, Hu S, Yao Y, Ren X, Zhang
Z, Cheng C, Liu Y, Zhang C, Huang J, et al: Study on the mechanism
of HIF1a-SOX9 in glucose-induced cardiomyocyte hypertrophy. Biomed
Pharmacother. 74:57–62. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Manyari DE: Prognostic implications of
echocardiographically determined left ventricular mass in the
Framingham Heart Study. N Engl J Med. 323:1706–1707. 1990.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Rababa'h A, Singh S, Suryavanshi SV,
Altarabsheh SE, Deo SV and McConnell BK: Compartmentalization role
of A-kinase anchoring proteins (AKAPs) in mediating protein kinase
A (PKA) signaling and cardiomyocyte hypertrophy. Int J Mol Sci.
16:218–229. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liang D, Zhong P, Hu J, Lin F, Qian Y, Xu
Z, Wang J, Zeng C, Li X and Liang G: EGFR inhibition protects
cardiac damage and remodeling through attenuating oxidative stress
in STZ-induced diabetic mouse model. J Mol Cell Cardiol. 82:63–74.
2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fukushima A and Lopaschuk GD: Cardiac
fatty acid oxidation in heart failure associated with obesity and
diabetes. Biochim Biophys Acta. 1861:1525–1534. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang Y, Zhang J, Zhang L, Gao P and Wu X:
Adiponectin attenuates high glucose-induced apoptosis through the
AMPK/p38 MAPK signaling pathway in NRK-52E cells. PLoS One.
12:e01782152017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lin CY, Hsu YJ, Hsu SC, Chen Y, Lee HS,
Lin SH, Huang SM, Tsai CS and Shih CC: CB1 cannabinoid receptor
antagonist attenuates left ventricular hypertrophy and Akt-mediated
cardiac fibrosis in experimental uremia. J Mol Cell Cardiol.
85:249–261. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Langer S, Kreutz R and Eisenreich A:
Metformin modulates apoptosis and cell signaling of human podocytes
under high glucose conditions. J Nephrol. 29:765–773. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kim SY, Morales CR, Gillette TG and Hill
JA: Epigenetic regulation in heart failure. Curr Opin Cardiol.
31:255–265. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dekker J and Mirny L: The 3D genome as
moderator of chromosomal communication. Cell. 164:1110–1121. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Heinz S, Romanoski CE, Benner C and Glass
CK: The selection and function of cell type-specific enhancers. Nat
Rev Mol Cell Biol. 16:144–154. 2015. View
Article : Google Scholar : PubMed/NCBI
|
14
|
May D, Blow MJ, Kaplan T, McCulley DJ,
Jensen BC, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright
C, et al: Large-scale discovery of enhancers from human heart
tissue. Nat Genet. 44:89–93. 2011. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Phillips JE and Corces VG: CTCF: Master
weaver of the genome. Cell. 137:1194–1211. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan
CL, Li Y, Lin S, Lin Y, Barr CL and Ren B: A compendium of
chromatin contact maps reveals spatially active regions in the
human genome. Cell Rep. 17:2042–2059. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wamstad JA, Alexander JM, Truty RM,
Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra
JA, et al: Dynamic and coordinated epigenetic regulation of
developmental transitions in the cardiac lineage. Cell.
151:206–220. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun Y, Huang J and Song K: BET protein
inhibition mitigates acute myocardial infarction damage in rats via
the TLR4/TRAF6/NF-κB pathway. Exp Ther Med. 10:2319–2324. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Mumby S, Gambaryan N, Meng C, Perros F,
Humbert M, Wort SJ and Adcock IM: Bromodomain and extra-terminal
protein mimic JQ1 decreases inflammation in human vascular
endothelial cells: Implications for pulmonary arterial
hypertension. Respirology. 22:157–164. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang HP, Li GQ, Guo WZ, Chen GH, Tang HW,
Yan B, Li J, Zhang JK, Wen PH, Wang ZH, et al: Oridonin
synergistically enhances JQ1-triggered apoptosis in hepatocellular
cancer cells through mitochondrial pathway. Oncotarget.
8:106833–106843. 2017.PubMed/NCBI
|
21
|
Mio C, Conzatti K, Baldan F, Allegri L,
Sponziello M, Rosignolo F, Russo D, Filetti S and Damante G: BET
bromodomain inhibitor JQ1 modulates microRNA expression in thyroid
cancer cells. Oncol Rep. 39:582–588. 2018.PubMed/NCBI
|
22
|
Wang H, Hong B, Li X, Deng K, Li H, Yan
Lui VW and Lin W: JQ1 synergizes with the Bcl-2 inhibitor ABT-263
against MYCN-amplified small cell lung cancer. Oncotarget.
8:86312–86324. 2017.PubMed/NCBI
|
23
|
Huynh K, Bernardo BC, McMullen JR and
Ritchie RH: Diabetic cardiomyopathy: Mechanisms and new treatment
strategies targeting antioxidant signaling pathways. Pharmacol
Ther. 142:375–415. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans
PR, Ballario P, Neuhaus D, Filetici P and Travers AA: The
structural basis for the recognition of acetylated histone H4 by
the bromodomain of histone acetyltransferase gcn5p. EMBO J.
19:6141–6149. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bennett RL and Licht JD: Targeting
epigenetics in cancer. Annu Rev Pharmacol Toxicol. 58:187–207.
2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Perry MM, Durham AL, Austin PJ, Adcock IM
and Chung KF: BET bromodomains regulate transforming growth
factor-β-induced proliferation and cytokine release in asthmatic
airway smooth muscle. J Biol Chem. 290:9111–9121. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Johnson R, Dludla P, Joubert E, February
F, Mazibuko S, Ghoor S, Muller C and Louw J: Aspalathin, a
dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against
high glucose induced shifts in substrate preference and apoptosis.
Mol Nutr Food Res. 60:922–934. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang Y, Babcock SA, Hu N, Maris JR, Wang
H and Ren J: Mitochondrial aldehyde dehydrogenase (ALDH2) protects
against streptozotocin-induced diabetic cardiomyopathy: Role of
GSK3β and mitochondrial function. BMC Med. 10:402012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Duan Q, McMahon S, Anand P, Shah H, Thomas
S, Salunga HT, Huang Y, Zhang R, Sahadevan A, Lemieux ME, et al:
BET bromodomain inhibition suppresses innate inflammatory and
profibrotic transcriptional networks in heart failure. Sci Transl
Med. 9(pii): eaah50842017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ning B, Li W, Zhao W and Wang R: Targeting
epigenetic regulations in cancer. Acta Biochim Biophys Sin
(Shanghai). 48:97–109. 2016.PubMed/NCBI
|
32
|
Itzen F, Greifenberg AK, Bösken CA and
Geyer M: Brd4 activates P-TEFb for RNA polymerase II CTD
phosphorylation. Nucleic Acids Res. 42:7577–7590. 2014. View Article : Google Scholar : PubMed/NCBI
|