1
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Llovet JM, Di Bisceglie AM, Bruix J,
Kramer BS, Lencioni R, Zhu AX, Sherman M, Schwartz M, Lotze M,
Talwalkar J, et al: Design and endpoints of clinical trials in
hepatocellular carcinoma. J Natl Cancer Inst. 100:698–711. 2008.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Llovet JM, Brú C and Bruix J: Prognosis of
hepatocellular carcinoma: The BCLC staging classification. Semin
Liver Dis. 19:329–338. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
European Association For The Study Of The
Liver; European Organisation For Research And Treatment Of Cancer:
EASL-EORTC clinical practice guidelines: Management of
hepatocellular carcinoma. J Hepatol. 56:908–943. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bruix J and Sherman M: American
Association for the Study of Liver Diseases: Management of
hepatocellular carcinoma: An update. Hepatology. 53:1020–1022.
2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lehmann K, Tschuor C, Rickenbacher A, Jang
JH, Oberkofler CE, Tschopp O, Schultze SM, Raptis DA, Weber A, Graf
R, et al: Liver failure after extended hepatectomy in mice is
mediated by a p21-dependent barrier to liver regeneration.
Gastroenterology. 143:1609–1619.e4. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Roayaie S, Jibara G, Tabrizian P, Park JW,
Yang J, Yan L, Schwartz M, Han G, Izzo F, Chen M, et al: The role
of hepatic resection in the treatment of hepatocellular cancer.
Hepatology. 62:440–451. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tremosini S, Reig M, de Lope CR, Forner A
and Bruix J: Treatment of early hepatocellular carcinoma: Towards
personalized therapy. Dig Liver Dis. 42 Suppl 3:S242–S248. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Clavien PA, Petrowsky H, DeOliveira ML and
Graf R: Strategies for safer liver surgery and partial liver
transplantation. N Eng J Med. 356:1545–1559. 2007. View Article : Google Scholar
|
10
|
Clavien PA, Oberkofler CE, Raptis DA,
Lehmann K, Rickenbacher A and El-Badry AM: What is critical for
liver surgery and partial liver transplantation: Size or quality?
Hepatology. 52:715–729. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen AC and Damian DL: Nicotinamide and
the skin. Australas J Dermatol. 55:169–175. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Oblong JE: The evolving role of the
NAD+/nicotinamide metabolome in skin homeostasis, cellular
bioenergetics, and aging. DNA Repair (Amst). 23:59–63. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Stevens MJ, Li F, Drel VR, Abatan OI, Kim
H, Burnett D, Larkin D and Obrosova IG: Nicotinamide reverses
neurological and neurovascular deficits in streptozotocin diabetic
rats. J Pharmacol Exp Ther. 320:458–464. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kaneko S, Wang J, Kaneko M, Yiu G, Hurrell
JM, Chitnis T, Khoury SJ and He Z: Protecting axonal degeneration
by increasing nicotinamide adenine dinucleotide levels in
experimental autoimmune encephalomyelitis models. J Neurosci.
26:9794–9804. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Thompson BC, Halliday GM and Damian DL:
Nicotinamide enhances repair of arsenic and ultraviolet
radiation-induced DNA damage in HaCaT keratinocytes and ex vivo
human skin. PLoS One. 10:e01174912015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ashkani Esfahani S, Khoshneviszadeh M,
Namazi MR, Noorafshan A, Geramizadeh B, Nadimi E and Razavipour ST:
Topical nicotinamide improves tissue regeneration in excisional
full-thickness skin wounds: A stereological and pathological study.
Trauma Mon. 20:e181932015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gariani K, Ryu D, Menzies KJ, Yi HS, Stein
S, Zhang H, Perino A, Lemos V, Katsyuba E, Jha P, et al: Inhibiting
poly ADP-ribosylation increases fatty acid oxidation and protects
against fatty liver disease. J Hepatol. 66:132–141. 2017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lehwald N, Tao GZ, Jang KY, Papandreou I,
Liu B, Liu B, Pysz MA, Willmann JK, Knoefel WT, Denko NC and
Sylvester KG: β-Catenin regulates hepatic mitochondrial function
and energy balance in mice. Gastroenterology. 143:754–764. 2012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Eriksson S, Prigge JR, Talago EA, Arnér ES
and Schmidt EE: Dietary methionine can sustain cytosolic redox
homeostasis in the mouse liver. Nat Commun. 6:64792015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tummala KS, Gomes AL, Yilmaz M, Graña O,
Bakiri L, Ruppen I, Ximénez-Embún P, Sheshappanavar V,
Rodriguez-Justo M, Pisano DG, et al: Inhibition of de novo NAD(+)
synthesis by oncogenic URI causes liver tumorigenesis through DNA
damage. Cancer Cell. 26:826–839. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Imai S, Armstrong CM, Kaeberlein M and
Guarente L: Transcriptional silencing and longevity protein Sir2 is
an NAD-dependent histone deacetylase. Nature. 403:795–800. 2000.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Timchenko NA, Harris TE, Wilde M, Bilyeu
TA, Burgess-Beusse BL, Finegold MJ and Darlington GJ:
CCAAT/enhancer binding protein alpha regulates p21 protein and
hepatocyte proliferation in newborn mice. Mol Cell Biol.
17:7353–7361. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lai HS, Chen WJ and Chen KM: Energy
substrate for liver regeneration after partial hepatectomy in rats:
Effects of glucose vs fat. JPEN J Parenter Enteral Nutr.
16:152–156. 1992. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jin J, Iakova P, Jiang Y, Medrano EE and
Timchenko NA: The reduction of SIRT1 in livers of old mice leads to
impaired body homeostasis and to inhibition of liver proliferation.
Hepatology. 54:989–998. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li J, Dou X, Li S, Zhang X, Zeng Y and
Song Z: Nicotinamide ameliorates palmitate-induced ER stress in
hepatocytes via cAMP/PKA/CREB pathway-dependent Sirt1 upregulation.
Biochim Biophys Acta. 1853:2929–2936. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Forbes SJ and Newsome PN: Liver
regeneration-mechanisms and models to clinical application. Nat Rev
Gastroenterol Hepatol. 13:473–485. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cardiff RD, Miller CH and Munn RJ: Manual
hematoxylin and eosin staining of mouse tissue sections. Cold
Spring Harb Protoc. 2014:655–658. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ma S, Zhao Y, Sun J, Mu P and Deng Y:
miR449a/SIRT1/PGC-1α is necessary for mitochondrial biogenesis
induced by T-2 toxin. Front Pharmacol. 8:9542018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang S, Wang C, Turdi S, Richmond KL,
Zhang Y and Ren J: ALDH2 protects against high fat diet-induced
obesity cardiomyopathy and defective autophagy: Role of CaM kinase
II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1α
deacetylation. Int J Obes (Lond). 42:1073–1087. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fausto N, Campbell JS and Riehle KJ: Liver
regeneration. J Hepatol. 57:692–694. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jin X, Zhang Z, Beer-Stolz D, Zimmers TA
and Koniaris LG: Interleukin-6 inhibits oxidative injury and
necrosis after extreme liver resection. Hepatology. 46:802–812.
2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tajima T, Goda N, Fujiki N, Hishiki T,
Nishiyama Y, Senoo-Matsuda N, Shimazu M, Soga T, Yoshimura Y,
Johnson RS and Suematsu M: HIF-1alpha is necessary to support
gluconeogenesis during liver regeneration. Biochem Biophys Res
Commun. 387:789–794. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bellet MM, Masri S, Astarita G,
Sassone-Corsi P, Della Fazia MA and Servillo G: Histone deacetylase
SIRT1 controls proliferation, circadian rhythm, and lipid
metabolism during liver regeneration in mice. J Biol Chem.
291:23318–23329. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jin J, Hong IH, Lewis K, Iakova P, Breaux
M, Jiang Y, Sullivan E, Jawanmardi N, Timchenko L and Timchenko NA:
Cooperation of C/EBP family proteins and chromatin remodeling
proteins is essential for termination of liver regeneration.
Hepatology. 61:315–325. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rodgers JT, Lerin C, Haas W, Gygi SP,
Spiegelman BM and Puigserver P: Nutrient control of glucose
homeostasis through a complex of PGC-1alpha and SIRT1. Nature.
434:113–118. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li X, Zhang S, Blander G, Tse JG, Krieger
M and Guarente L: SIRT1 deacetylates and positively regulates the
nuclear receptor LXR. Mol Cell. 28:91–106. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Longo CR, Patel VI, Shrikhande GV, Scali
ST, Csizmadia E, Daniel S, Sun DW, Grey ST, Arvelo MB and Ferran C:
A20 protects mice from lethal radical hepatectomy by promoting
hepatocyte proliferation via a p21waf1-dependent mechanism.
Hepatology. 42:156–164. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Okumura S, Teratani T, Fujimoto Y, Zhao X,
Tsuruyama T, Masano Y, Kasahara N, Iida T, Yagi S, Uemura T, et al:
Oral administration of polyamines ameliorates liver
ischemia/reperfusion injury and promotes liver regeneration in
rats. Liver Transpl. 22:1231–1244. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hwang ES and Song SB: Nicotinamide is an
inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell
Mol Life Sci. 74:3347–3362. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Weymann A, Hartman E, Gazit V, Wang C,
Glauber M, Turmelle Y and Rudnick DA: p21 is required for
dextrose-mediated inhibition of mouse liver regeneration.
Hepatology. 50:207–215. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Brinkmann A, Katz N, Sasse D and
Jungermann K: Increase of the gluconeogenic and decrease of the
glycolytic capacity of rat liver with a change of the metabolic
zonation after partial hepatectomy. Hoppe Seylers Z Physiol Chem.
359:1561–1571. 1978. View Article : Google Scholar : PubMed/NCBI
|
42
|
Delgado-Coello B, Briones-Orta MA,
Macias-Silva M and Mas-Oliva J: Cholesterol: Recapitulation of its
active role during liver regeneration. Liver Int. 31:1271–1284.
2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Asher G, Gatfield D, Stratmann M, Reinke
H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW and Schibler U:
SIRT1 regulates circadian clock gene expression through PER2
deacetylation. Cell. 134:317–328. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chang HC and Guarente L: SIRT1 mediates
central circadian control in the SCN by a mechanism that decays
with aging. Cell. 153:1448–1460. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Nakahata Y, Kaluzova M, Grimaldi B, Sahar
S, Hirayama J, Chen D, Guarente LP and Sassone-Corsi P: The
NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin
remodeling and circadian control. Cell. 134:329–340. 2008.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Sahar S and Sassone-Corsi P: Metabolism
and cancer: The circadian clock connection. Nat Rev Cancer.
9:886–896. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Imai S and Guarente L: Ten years of
NAD-dependent SIR2 family deacetylases: Implications for metabolic
diseases. Trends Pharmacol Sci. 31:212–220. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Haigis MC and Sinclair DA: Mammalian
sirtuins: Biological insights and disease relevance. Annu Rev
Pathol. 5:253–295. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Jang SY, Kang HT and Hwang ES:
Nicotinamide-induced mitophagy: Event mediated by high NAD+/NADH
ratio and SIRT1 protein activation. J Biol Chem. 287:19304–19314.
2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liu D, Gharavi R, Pitta M, Gleichmann M
and Mattson MP: Nicotinamide prevents NAD+ depletion and protects
neurons against excitotoxicity and cerebral ischemia: NAD+
consumption by SIRT1 may endanger energetically compromised
neurons. Neuromolecular Med. 11:28–42. 2009. View Article : Google Scholar : PubMed/NCBI
|