1
|
Nattel S: New ideas about atrial
fibrillation 50 years on. Nature. 415:219–226. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gudbjartsson DF, Arnar DO, Helgadottir A,
Gretarsdottir S, Holm H, Sigurdsson A, Jonasdottir A, Baker A,
Thorleifsson G, Kristjansson K, et al: Variants conferring risk of
atrial fibrillation on chromosome 4q25. Nature. 448:353–357. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Du X, Dong J and Ma C: Is atrial
fibrillation a preventable disease? J Am Coll Cardiol.
69:1968–1982. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chugh SS, Havmoeller R, Narayanan K, Singh
D, Rienstra M, Benjamin EJ, Gillum RF, Kim YH, McAnulty JH Jr,
Zheng ZJ, et al: Worldwide epidemiology of atrial fibrillation: A
Global Burden of Disease 2010 Study. Circulation. 129:837–847.
2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hijazi Z, Oldgren J, Lindbäck J, Alexander
JH, Connolly SJ, Eikelboom JW, Ezekowitz MD, Held C, Hylek EM,
Lopes RD, et al: A biomarker-based risk score to predict death in
patients with atrial fibrillation: The ABC (age, biomarkers,
clinical history) death risk score. Eur Heart J. 39:477–485. 2018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Schnabel RB, Yin X, Gona P, Larson MG,
Beiser AS, McManus DD, Newton-Cheh C, Lubitz SA, Magnani JW,
Ellinor PT, et al: 50 year trends in atrial fibrillation
prevalence, incidence, risk factors, and mortality in the
Framingham Heart Study: A cohort study. Lancet. 386:154–162. 2015.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Kirchhof P: The future of atrial
fibrillation management: Integrated care and stratified therapy.
Lancet. 390:1873–1887. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kotecha D, Calvert M, Deeks JJ, Griffith
M, Kirchhof P, Lip GY, Mehta S, Slinn G, Stanbury M, Steeds RP and
Townend JN: A review of rate control in atrial fibrillation, and
the rationale and protocol for the RATE-AF trial. BMJ Open.
7:e0150992017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kirchhof P, Benussi S, Kotecha D, Ahlsson
A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks
J, et al: 2016 ESC guidelines for the management of atrial
fibrillation developed in collaboration with EACTS. Europace.
18:1609–1678. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chiang CE, Wang KL and Lip GY: Stroke
prevention in atrial fibrillation: An Asian perspective. Thromb
Haemost. 111:789–797. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fauchier L, Philippart R, Clementy N,
Bourguignon T, Angoulvant D, Ivanes F, Babuty D and Bernard A: How
to define valvular atrial fibrillation? Arch Cardiovasc Dis.
108:530–539. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Boriani G, Cimaglia P, Fantecchi E,
Mantovani V, Ziacchi M, Valzania C, Martignani C, Biffi M and
Diemberger I: Non-valvular atrial fibrillation: Potential clinical
implications of the heterogeneous definitions used in trials on new
oral anticoagulants. J Cardiovasc Med (Hagerstown). 16:491–496.
2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nigro JM, Cho KR, Fearon ER, Kern SE,
Ruppert JM, Oliner JD, Kinzler KW and Vogelstein B: Scrambled
exons. Cell. 64:607–613. 1991. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cortés-López M and Miura P: Emerging
functions of circular RNAs. Yale J Biol Med. 89:527–537.
2016.PubMed/NCBI
|
17
|
He L, Zhang A, Xiong L, Li Y, Huang R,
Liao L, Zhu Z and Wang AY: Deep circular RNA sequencing provides
insights into the mechanism underlying grass carp reovirus
infection. Int J Mol Sci. 18(pii): E19772017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang S, Zhu DN, Li H, Li H, Feng C and
Zhang W: Characterization of circRNA-associated-ceRNA networks in a
senescence-accelerated mouse prone 8 brain. Mol Ther. 25:2053–2061.
2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nan A, Chen LJ, Zhang N, Liu Z, Yang T,
Wang Z, Yang C and Jiang Y: A novel regulatory network among
LncRpa, CircRar1, MiR-671 and apoptotic genes promotes lead-induced
neuronal cell apoptosis. Arch Toxicol. 91:1671–1684. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Audic S and Claverie JM:
Self-identification of protein-coding regions in microbial genomes.
Proc Natl Acad Sci USA. 95:10026–10031. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Su H, Lin F, Deng X, Shen L, Fang Y, Fei
Z, Zhao L, Zhang X, Pan H, Xie D, et al: Profiling and
bioinformatics analyses reveal differential circular RNA expression
in radioresistant esophageal cancer cells. J Transl Med.
14:2252016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Qu S, Yang X, Li X, Wang J, Gao Y, Shang
R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding
RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jeck WR and Sharpless NE: Detecting and
characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen LL and Yang L: Regulation of circRNA
biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Starke S, Jost I, Rossbach O, Schneider T,
Schreiner S, Hung LH and Bindereif A: Exon circularization requires
canonical splice signals. Cell Rep. 10:103–111. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guo JN, Li J, Zhu CL, Feng WT, Shao JX,
Wan L, Huang MD and He JD: Comprehensive profile of differentially
expressed circular RNAs reveals that hsa_circ_0000069 is
upregulated and promotes cell proliferation, migration, and
invasion in colorectal cancer. Onco Targets Ther. 9:7451–7458.
2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Galasso M, Costantino G, Pasquali L,
Minotti L, Baldassari F, Corrà F, Agnoletto C and Volinia S:
Profiling of the predicted circular RNAs in ductal in situ and
invasive breast cancer: A pilot study. Int J Genomics.
2016:45038402016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen J, Li Y, Zheng Q, Bao C, He J, Chen
B, Lyu D, Zheng B, Xu Y, Long Z, et al: Circular RNA profile
identifies circPVT1 as a proliferative factor and prognostic marker
in gastric cancer. Cancer Lett. 388:208–219. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tang CM, Zhang M, Huang L, Hu ZQ, Zhu JN,
Xiao Z, Zhang Z, Lin QX, Zheng XL, Yang M, et al: CircRNA_000203
enhances the expression of fibrosis-associated genes by
derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac
fibroblasts. Sci Rep. 7:403422017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Woods CE and Olgin J: Atrial fibrillation
therapy now and in the future: Drugs, biologicals, and ablation.
Circ Res. 114:1532–1546. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Brundel BJ, Van Gelder IC, Henning RH,
Tuinenburg AE, Wietses M, Grandjean JG, Wilde AA, Van Gilst WH and
Crijns HJ: Alterations in potassium channel gene expression in
atria of patients with persistent and paroxysmal atrial
fibrillation: Differential regulation of protein and mRNA levels
for K+ channels. J Am Coll Cardiol. 37:926–932. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Santulli G, D'ascia SL and D'ascia C:
Development of atrial fibrillation in recipients of cardiac
resynchronization therapy: The role of atrial reverse remodelling.
Can J Cardiol. 28:245.e17–e18. 2012. View Article : Google Scholar
|
35
|
Xie W, Santulli G, Guo X, Gao M, Chen BX
and Marks AR: Imaging atrial arrhythmic intracellular calcium in
intact heart. J Mol Cell Cardiol. 64:120–123. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Andrade J, Khairy P, Dobrev D and Nattel
S: The clinical profile and pathophysiology of atrial fibrillation:
Relationships among clinical features, epidemiology, and
mechanisms. Circ Res. 114:1453–1468. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dobrev D and Nattel S: Calcium handling
abnormalities in atrial fibrillation as a target for innovative
therapeutics. J Cardiovasc Pharmacol. 52:293–299. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Luo X, Pan Z, Shan H, Xiao J, Sun X, Wang
N, Lin H, Xiao L, Maguy A, Qi XY, et al: MicroRNA-26 governs
profibrillatory inward-rectifier potassium current changes in
atrial fibrillation. J Clin Invest. 123:1939–1951. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cañón S, Caballero R, Herraiz-Martinez A,
Pérez-Hernández M, López B, Atienza F, Jalife J, Hove-Madsen L,
Delpón E and Bernad A: miR-208b upregulation interferes with
calcium handling in HL-1 atrial myocytes: Implications in human
chronic atrial fibrillation. J Mol Cell Cardiol. 99:162–173. 2016.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Lai LP, Su MJ, Lin JL, Lin FY, Tsai CH,
Chen YS, Huang SK, Tseng YZ and Lien WP: Down-regulation of L-type
calcium channel and sarcoplasmic reticular Ca(2+)-ATPase mRNA in
human atrial fibrillation without significant change in the mRNA of
ryanodine receptor, calsequestrin and phospholamban: An insight
into the mechanism of atrial electrical remodeling. J Am Coll
Cardiol. 33:1231–1237. 1999. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tao H, Zhang M, Yang JJ and Shi KH:
MicroRNA-21 via dysregulation of WW domain-containing protein 1
regulate atrial fibrosis in atrial fibrillation. Heart Lung Circ.
27:104–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang H, Bei Y, Shen S, Huang P, Shi J,
Zhang J, Sun Q, Chen Y, Yang Y, Xu T, et al: miR-21-3p controls
sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol
Cell Cardiol. 94:43–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yan MW, Chen C, Gong W, Yin Z, Zhou L,
Chaugai S and Wang DW: miR-21-3p regulates cardiac hypertrophic
response by targeting histone deacetylase-8. Cardiovasc Res.
105:340–352. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Girmatsion Z, Biliczki P, Bonauer A,
Wimmer-Greinecker G, Scherer M, Moritz A, Bukowska A, Goette A,
Nattel S, Hohnloser SH and Ehrlich JR: Changes in microRNA-1
expression and I-K1 up-regulation in human atrial fibrillation.
Heart Rhythm. 6:1802–1809. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ehrlich JR: Inward rectifier potassium
currents as a target for atrial fibrillation therapy. J Cardiovasc
Pharmacol. 52:129–135. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Doss JF, Corcoran DL, Jima DD, Telen MJ,
Dave SS and Chi JT: A comprehensive joint analysis of the long and
short RNA transcriptomes of human erythrocytes. BMC Genomics.
16:9522015. View Article : Google Scholar : PubMed/NCBI
|