(+)‑pinoresinol‑O‑β‑D‑glucopyranoside from Eucommia ulmoides Oliver and its anti‑inflammatory and antiviral effects against influenza A (H1N1) virus infection

  • Authors:
    • Jing Li
    • Xiaoli Liang
    • Beixian Zhou
    • Xiaowei Chen
    • Peifang Xie
    • Haiming Jiang
    • Zhihong Jiang
    • Zifeng Yang
    • Xiping Pan
  • View Affiliations

  • Published online on: November 26, 2018     https://doi.org/10.3892/mmr.2018.9696
  • Pages: 563-572
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Eucommia ulmoides Oliver (Du-Zhong) is an ancient Chinese herbal remedy used for the treatment of various diseases. To date, the effects of its constituent lignans on influenza viruses remain to be elucidated. In the present study, a lignan glycoside was isolated and purified from Eucommia ulmoides Oliver. Its structures were identified via extensive spectroscopic analysis, and its antiviral and anti‑inflammatory activities, specifically against influenza viruses, were determined via a cytopathic effect (CPE) assay, plaque‑reduction assays, a progeny virus yield reduction assay, reverse transcription‑quantitative polymerase chain reaction analysis and a Luminex assay. Additionally, western blot analysis was performed to investigate the underlying mechanisms of its effects against influenza viruses. The chemical and spectroscopic methods determined the structure of lignan glycoside to be (+)‑pinoresinol‑O‑β‑D‑glucopyranoside. The CPE assay showed that (+)‑pinoresinol‑O‑β‑D‑glucopyranoside exerted inhibitory activities with 50% inhibition concentration values of 408.81±5.24 and 176.24±4.41 µg/ml against the influenza A/PR/8/34 (H1N1) and A/Guangzhou/GIRD07/09 (H1N1) strains, respectively. Its antiviral properties were confirmed by plaque reduction and progeny virus yield reduction assays. Additional mechanistic analyses indicated that the anti‑H1N1 virus‑induced effects of (+)‑pinoresinol‑O-β‑D-glucopyranoside were likely due to inactivation of the nuclear factor‑κB, p38 mitogen‑activated protein kinase and AKT signaling pathways. Furthermore, (+)‑pinoresinol‑O‑β‑D‑glucopyranoside exhibited pronounced inhibitory effects on the expression of influenza H1N1 virus‑induced pro‑inflammatory mediators, including tumor necrosis factor‑α, interleukin (IL)‑6, IL‑8 and monocyte chemoattractant protein 1. The data obtained suggest that (+)‑pinoresinol‑O‑β‑D-glucopyranoside may be a candidate drug for treating influenza H1N1 virus infection.
View Figures
View References

Related Articles

Journal Cover

January-2019
Volume 19 Issue 1

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Liang X, Zhou B, Chen X, Xie P, Jiang H, Jiang Z, Yang Z and Pan X: (+)‑pinoresinol‑O‑β‑D‑glucopyranoside from Eucommia ulmoides Oliver and its anti‑inflammatory and antiviral effects against influenza A (H1N1) virus infection. Mol Med Rep 19: 563-572, 2019.
APA
Li, J., Liang, X., Zhou, B., Chen, X., Xie, P., Jiang, H. ... Pan, X. (2019). (+)‑pinoresinol‑O‑β‑D‑glucopyranoside from Eucommia ulmoides Oliver and its anti‑inflammatory and antiviral effects against influenza A (H1N1) virus infection. Molecular Medicine Reports, 19, 563-572. https://doi.org/10.3892/mmr.2018.9696
MLA
Li, J., Liang, X., Zhou, B., Chen, X., Xie, P., Jiang, H., Jiang, Z., Yang, Z., Pan, X."(+)‑pinoresinol‑O‑β‑D‑glucopyranoside from Eucommia ulmoides Oliver and its anti‑inflammatory and antiviral effects against influenza A (H1N1) virus infection". Molecular Medicine Reports 19.1 (2019): 563-572.
Chicago
Li, J., Liang, X., Zhou, B., Chen, X., Xie, P., Jiang, H., Jiang, Z., Yang, Z., Pan, X."(+)‑pinoresinol‑O‑β‑D‑glucopyranoside from Eucommia ulmoides Oliver and its anti‑inflammatory and antiviral effects against influenza A (H1N1) virus infection". Molecular Medicine Reports 19, no. 1 (2019): 563-572. https://doi.org/10.3892/mmr.2018.9696