1
|
Erggelet C, Kreuz PC, Mrosek EH,
Schagemann JC, Lahm A, Ducommun PP and Ossendorf C: Autologous
chondrocyte implantation versus ACI using 3D-bioresorbable graft
for the treatment of large full-thickness cartilage lesions of the
knee. Arch Orthop Trauma Surg. 130:957–964. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ge X, Shi R and Ma X: The secreted protein
WNT5A regulates condylar chondrocyte proliferation, hypertrophy and
migration. Arch Oral Biol. 82:171–179. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liao S, Zhou K, Li D, Xie X, Jun F and
Wang J: Schisantherin A suppresses interleukin-1β-induced
inflammation in human chondrocytes via inhibition of NF-κB and
MAPKs activation. Eur J Pharmacol. 780:65–70. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Martinez SE, Chen Y, Ho EA, Martinez SA
and Davies NM: Pharmacological effects of a C-phycocyanin-based
multicomponent nutraceutical in an in-vitro canine chondrocyte
model of osteoarthritis. Can J Vet Res. 79:241–249. 2015.PubMed/NCBI
|
5
|
Wang HZ, Jin Y, Wang P, Han C, Wang ZP and
Dong MY: Alteration of serum endocan in normal pregnancy and
preeclampsia. Clin Exp Obstet Gynecol. 44:419–422. 2017.PubMed/NCBI
|
6
|
Xu L, Peng Q, Xuan W, Feng X, Kong X,
Zhang M, Tan W, Xue M and Wang F: Interleukin-29 enhances synovial
inflammation and cartilage degradation in osteoarthritis. Mediators
Inflamm. 2016:96315102016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu-Bryan R and Terkeltaub R: Emerging
regulators of the inflammatory process in osteoarthritis. Nat Rev
Rheumatol. 11:35–44. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wojdasiewicz P, Poniatowski ŁA and
Szukiewicz D: The role of inflammatory and anti-inflammatory
cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm.
2014:5614592014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bruyère O, Cooper C, Arden N, Branco J,
Brandi ML, Herrero-Beaumont G, Berenbaum F, Dennison E, Devogelaer
JP, Hochberg M, et al: Can we identify patients with high risk of
osteoarthritis progression who will respond to treatment? A focus
on epidemiology and phenotype of osteoarthritis. Drugs Aging.
32:179–187. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kimura T: Progress of research in
osteoarthritis. An overview of the recent knowledge on
osteoarthritis: Pathogenesis, evaluation and therapies. Clin
Calcium. 19:1565–1571. 2009.(In Japanese). PubMed/NCBI
|
11
|
Taniguchi N, Kawahara K, Yone K,
Hashiguchi T, Yamakuchi M, Goto M, Inoue K, Yamada S, Ijiri K,
Matsunaga S, et al: High mobility group box chromosomal protein-1
plays a role in the pathogenesis of rheumatoid arthritis as a novel
cytokine. Arthritis Rheum. 48:971–981. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sunahori K, Yamamura M, Yamana J, Takasugi
K, Kawashima M and Makino H: Increased expression of receptor for
advanced glycation end products by synovial tissue macrophages in
rheumatoid arthritis. Arthritis Rheum. 54:97–104. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kokkola R, Li J, Sundberg E, Aveberger AC,
Palmblad K, Yang H, Tracey KJ, Andersson U and Harris HE:
Successful treatment of collagen-induced arthritis in mice and rats
by targeting extracellular high mobility group box chromosomal
protein-1 activity. Arthritis Rheum. 48:2052–2058. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hamada T, Torikai M, Kuwazuru A, Tanaka M,
Horai N, Fukuda T, Yamada S, Nagayama S, Hashiguchi K, Sunahara N,
et al: Extracellular high mobility group box chromosomal protein-1
is a coupling factor for hypoxia and inflammation in arthritis.
Arthritis Rheum. 58:2675–2685. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen YJ, Sheu ML, Tsai KS, Yang RS and Liu
SH: Advanced glycation end products induce peroxisome
proliferator-activated receptor γ down-regulation-related
inflammatory signals in human chondrocytes via Toll-like receptor-4
and receptor for advanced glycation end products. PLoS One.
8:e666112013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sims GP, Rowe DC, Rietdijk ST, Herbst R
and Coyle AJ: HMGB1 and RAGE in inflammation and cancer. Annu Rev
Immunol. 28:367–388. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang WJ, Yin SJ and Rong RQ: PKR and HMGB1
expression and function in rheumatoid arthritis. Genet Mol Res.
14:17864–17870. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Qin Y, Chen Y, Wang W, Wang Z, Tang G,
Zhang P, He Z, Liu Y, Dai SM and Shen Q: HMGB1-LPS complex promotes
transformation of osteoarthritis synovial fibroblasts to a
rheumatoid arthritis synovial fibroblast-like phenotype. Cell Death
Dis. 5:e10772014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang X, Guo Y, Wang C and Yu H, Yu X and
Yu H: MicroRNA-142-3p inhibits chondrocyte apoptosis and
inflammation in osteoarthritis by targeting HMGB1. Inflammation.
39:1718–1728. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ahad A, Ganai AA, Mujeeb M and Siddiqui
WA: Chrysin, an anti-inflammatory molecule, abrogates renal
dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol.
279:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Khan R, Khan AQ, Qamar W, Lateef A, Ali F,
Rehman MU, Tahir M, Sharma S and Sultana S: Chrysin abrogates
cisplatin-induced oxidative stress, p53 expression, goblet cell
disintegration and apoptotic responses in the jejunum of Wistar
rats. Br J Nutr. 108:1574–1585. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zheng W, Tao Z, Cai L, Chen C, Zhang C,
Wang Q, Ying X, Hu W and Chen H: Chrysin attenuates IL-1β-induced
expression of inflammatory mediators by suppressing NF-κB in human
osteoarthritis chondrocytes. Inflammation. 40:1143–1154. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Magna M and Pisetsky DS: The role of HMGB1
in the pathogenesis of inflammatory and autoimmune diseases. Mol
Med. 20:138–146. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu M, Zhou GM, Wang LH, Zhu L, Liu JM,
Wang XD, Li HT and Chen L: Inhibiting high-mobility group box 1
(HMGB1) attenuates inflammatory cytokine expression and
neurological deficit in ischemic brain injury following cardiac
arrest in rats. Inflammation. 39:1594–1602. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu M, Zhong S, Kong R, Shao H, Wang C,
Piao H, Lv W, Chu X and Zhao Y: Paeonol alleviates
interleukin-1β-induced inflammatory responses in chondrocytes
during osteoarthritis. Biomed Pharmacother. 95:914–921. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lin J, Li X, Qi W, Yan Y, Chen K, Xue X,
Xu X, Feng Z and Pan X: Isofraxidin inhibits interleukin-1β induced
inflammatory response in human osteoarthritis chondrocytes. Int
Immunopharmacol. 64:238–245. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Guo D, Cao XW, Liu JW, Niu W, Ma ZW, Lin
DK, Chen JY, Lian WD, Ouyang WW and Liu J: Clinical effectiveness
and micro-perfusion alteration of Jingui external lotion in
patients with knee osteoarthritis: Study protocol for a randomized
controlled trial. Trials. 16:1242015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zeng L, Xiao CZ, Deng ZT and Li RH:
Chondroprotective effects and multitarget mechanisms of fu yuan
capsule in a rat osteoarthritis model. Evid Based Complement
Alternat Med. 2017:89856232017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tong P, Xu S, Cao G, Jin W, Guo Y, Cheng
Y, Jin H, Shan L and Xiao L: Chondroprotective activity of a
detoxicated traditional Chinese medicine (Fuzi) of
Aconitum carmichaeli Debx against severe-stage
osteoarthritis model induced by mono-iodoacetate. J Ethnopharmacol.
151:740–744. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cheng BC, Fu XQ, Guo H, Li T, Wu ZZ, Chan
K and Yu ZL: The genus Rosa and arthritis: Overview on
pharmacological perspectives. Pharmacol Res. 114:219–234. 2016.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen GY, Tang J, Zheng P and Liu Y: CD24
and Siglec-10 selectively repress tissue damage-induced immune
responses. Science. 323:1722–1725. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chiba S, Baghdadi M, Akiba H, Yoshiyama H,
Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan
JD, et al: Tumor-infiltrating DCs suppress nucleic acid-mediated
innate immune responses through interactions between the receptor
TIM-3 and the alarmin HMGB1. Nat Immunol. 13:832–842. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Tian X, Liu C, Shu Z and Chen G: Review:
Therapeutic targeting of HMGB1 in stroke. Curr Drug Deliv.
14:785–790. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rosenberg JH, Rai V, Dilisio MF and
Agrawal DK: Damage-associated molecular patterns in the
pathogenesis of osteoarthritis: Potentially novel therapeutic
targets. Mol Cell Biochem. 434:171–179. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu L, Yang M, Kang R, Dai Y, Yu Y, Gao F,
Wang H, Sun X, Li X, Li J, et al: HMGB1-DNA complex-induced
autophagy limits AIM2 inflammasome activation through RAGE. Biochem
Biophys Res Commun. 450:851–856. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Schaper F, Westra J and Bijl M: Recent
developments in the role of high-mobility group box 1 in systemic
lupus erythematosus. Mol Med. 20:72–79. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Miclea RL, Siebelt M, Finos L, Goeman JJ,
Löwik CW, Oostdijk W, Weinans H, Wit JM, Robanus-Maandag EC and
Karperien M: Inhibition of Gsk3β in cartilage induces
osteoarthritic features through activation of the canonical Wnt
signaling pathway. Osteoarthritis Cartilage. 19:1363–1372. 2011.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Kim HA and Blanco FJ: Cell death and
apoptosis in osteoarthritic cartilage. Curr Drug Targets.
8:333–345. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang M, Jiang L, Wang Q, Chen H and Xu G:
Traditional Chinese medicine for knee osteoarthritis: An overview
of systematic review. PLoS One. 12:e01898842017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tang H, He S, Zhang X, Luo S, Zhang B,
Duan X, Zhang Z, Wang W, Wang Y and Sun Y: A network pharmacology
approach to uncover the pharmacological mechanism of xuanhusuo
powder on osteoarthritis. Evid Based Complement Alternat Med.
2016:32469462016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhou X, Lin X, Xiong Y, Jiang L, Li W, Li
J and Wu L: Chondroprotective effects of palmatine on
osteoarthritis in vivo and in vitro: A possible mechanism of
inhibiting the Wnt/β-catenin and Hedgehog signaling pathways. Int
Immunopharmacol. 34:129–138. 2016. View Article : Google Scholar : PubMed/NCBI
|