1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clini. 66:7–30. 2016. View Article : Google Scholar
|
2
|
Meyerhardt JA and Mayer RJ: Systemic
therapy for colorectal cancer. N Engl J Med. 352:476–487. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Chiu SJ, Lee YJ, Hsu TS and Chen WS:
Oxaliplatin-induced gamma-H2AX activation via both p53-dependent
and -independent pathways but is not associated with cell cycle
arrest in human colorectal cancer cells. Chem Biol Interact.
182:173–182. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fremin C and Meloche S: From basic
research to clinical development of MEK1/2 inhibitors for cancer
therapy. J Hematol Oncol. 3:82010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Favata MF, Horiuchi KY, Manos EJ, Daulerio
AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F,
et al: Identification of a novel inhibitor of mitogen-activated
protein kinase kinase. J Biol Chem. 273:18623–18632. 1998.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Stepanenko A, Andreieva S, Korets K,
Mykytenko D, Huleyuk N, Vassetzky Y and Kavsan V: Step-wise and
punctuated genome evolution drive phenotype changes of tumor cells.
Mutat Res. 771:56–69. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rusch VW, Rice TW, Crowley J, Blackstone
EH, Rami-Porta R and Goldstraw P: The seventh edition of the
American joint committee on cancer/international union against
cancer staging manuals: The new era of data-driven revisions. J
Thorac Cardiovasc Surg. 139:819–821. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Motoyama N and Naka K: DNA damage tumor
suppressor genes and genomic instability. Curr Opin Genet Dev.
14:11–16. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rogakou EP, Nieves-Neira W, Boon C,
Pommier Y and Bonner WM: Initiation of DNA fragmentation during
apoptosis induces phosphorylation of H2AX histone at serine 139. J
BiolChem. 275:9390–9395. 2000.
|
11
|
Niedernhofer LJ, Odijk H, Budzowska M, van
Drunen E, Maas A, Theil AF, de Wit J, Jaspers NG, Beverloo HB,
Hoeijmakers JH and Kanaar R: The structure-specific endonuclease
Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced
double-strand breaks. Mol Cell Biol. 24:5776–5787. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ronchi CL, Sbiera S, Kraus L, Wortmann S,
Johanssen S, Adam P, Willenberg HS, Hahner S, Allolio B and
Fassnacht M: Expression of excision repair cross complementing
group 1 and prognosis in adrenocortical carcinoma patients treated
with platinum-based chemotherapy. Endocr-Relat Cancer. 16:907–918.
2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lu M, Gao J, Wang XC and Shen L:
Expressions of thymidylate synthase, thymidine phosphorylase, class
III beta-tubulin, and excision repair cross-complementing group
1predict response in advanced gastric cancer patients receiving
capecitabine plus paclitaxel or cisplatin. Chin J Cancer Res.
23:288–294. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Grady WM and Pritchard CC: Molecular
alterations and biomarkers in colorectal cancer. Toxicol Pathol.
42:124–139. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cancer Genome Atlas Network: Comprehensive
molecular characterization of human colon and rectal cancer.
Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Arcila ME, Drilon A, Sylvester BE, Lovly
CM, Borsu L, Reva B, Kris MG, Solit DB and Ladanyi M: MAP2K1 (MEK1)
mutations define a distinct subset of lung adenocarcinoma
associated with smoking. Clin Cancer Res. 21:1935–1943. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Sogabe S, Togashi Y, Kato H, Kogita A,
Mizukami T, Sakamoto Y, Banno E, Terashima M, Hayashi H, de Velasco
MA, et al: MEK inhibitor for gastric cancer with MEK1 gene
mutations. Mol Cancer Ther. 13:3098–3106. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jin W, Wu L, Liang K, Liu B, Lu Y and Fan
Z: Roles of the PI-3K and MEK pathways in Ras-mediated
chemoresistance in breast cancer cells. Br J Cancer. 89:185–191.
2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yan Y, Li J, Han J, Hou N, Song Y and Dong
L: Chlorogenic acid enhances the effects of 5-fluorouracil in human
hepatocellular carcinoma cells through the inhibition of
extracellular signal-regulated kinases. Anticancer Drugs.
26:540–546. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yu X, Li Z, Yu J, Chan MT and Wu WK:
MicroRNAs predict and modulate responses to chemotherapy in
colorectal cancer. Cell Prolif. 48:503–510. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yamaguchi T, Kakefuda R, Tajima N, Sowa Y
and Sakai T: Antitumor activities of JTP-74057 (GSK1120212), a
novel MEK1/2 inhibitor, on colorectal cancer cell lines in vitro
and in vivo. Int J Oncol. 39:23–31. 2011.PubMed/NCBI
|
22
|
Watanabe M, Sowa Y, Yogosawa M and Sakai
T: Novel MEK inhibitor trametinib and other retinoblastoma gene
(RB)-reactivating agents enhance efficacy of 5-fluorouracil on
human colon cancer cells. Cancer Sci. 104:687–693. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pereira DM, Simões AE, Gomes SE, Castro
RE, Carvalho T, Rodrigues CM and Borralho PM: MEK5/ERK5 signaling
inhibition increases colon cancer cell sensitivity to
5-fluorouracil through a p53-dependent mechanism. Oncotarget.
7:34322–34340. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Urick ME, Chung EJ, Shield WP III, Gerber
N, White A, Sowers A, Thetford A, Camphausen K, Mitchell J and
Citrin DE: Enhancement of 5-fluorouracil-induced in vitro and in
vivo radiosensitization with MEK inhibition. Clin Cancer Res.
17:5038–5047. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gong J, Chen Y, Yang L, Pillai R,
Shirasawa S and Fakih M: MEK162 enhances antitumor activity of
5-fluorouracil and trifluridine in KRAS-mutated human colorectal
cancer cell lines. Anticancer Res. 37:2831–2838. 2017.PubMed/NCBI
|
26
|
Rogakou EP, Pilch DR, Orr AH, Ivanova VS
and Bonner WM: DNA double-stranded breaks induce histone H2AX
phosphorylation on serine 139. J Biol Chem. 273:5858–5868. 1998.
View Article : Google Scholar : PubMed/NCBI
|
27
|
MacPhail SH, Banath JP, Yu TY, Chu EH,
Lambur H and Olive PL: Expression of phosphorylated histone H2AX in
cultured cell lines following exposure to X-rays. Int J Radiat
Biol. 79:351–358. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li J, Li ZN, Yu LC, Bao QL, Wu JR, Shi SB
and Li XQ: Association of expression of MRP1, BCRP, LRP and ERCC1
with outcome of patients with locally advanced non-small cell lung
cancer who received neoadjuvant chemotherapy. Lung Cancer.
69:116–122. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wakasa K, Kawabata R, Nakao S, Hattori H,
Taguchi K, Uchida J, Yamanaka T, Maehara Y, Fukushima M and Oda S:
Dynamic modulation of thymidylate synthase gene expression and
fluorouracil sensitivity in human colorectal cancer cells. PLoS
One. 10:e01230762015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Peters GJ, Backus HH, Freemantle S, van
Triest B, Codacci-Pisanelli G, van der Wilt CL, Smid K, Lunec J,
Calvert AH, Marsh S, et al: Induction of thymidylate synthase as a
5-fluorouracil resistance mechanism. Biochimica Biophysica Acta.
1587:194–205. 2002. View Article : Google Scholar
|