1
|
Braunwald E: The war against heart
failure: The Lancet lecture. Lancet. 385:812–824. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tham YK, Bernardo BC, Ooi JY, Weeks KL and
McMullen JR: Pathophysiology of cardiac hypertrophy and heart
failure: Signaling pathways and novel therapeutic targets. Arch
Toxicol. 89:1401–1438. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Moran AE, Forouzanfar MH, Roth GA, Mensah
GA, Ezzati M, Flaxman A, Murray CJ and Naghavi M: The global burden
of ischemic heart disease in 1990 and 2010: The Global burden of
disease 2010 study. Circulation. 129:1493–1501. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tanai E and Frantz S: Pathophysiology of
heart failure. Compr Physiol. 6:187–214. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kovács Á, Papp Z and Nagy L: Causes and
pathophysiology of heart failure with preserved ejection fraction.
Heart Fail Clin. 10:389–398. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang Y, Bauersachs J and Langer HF:
Immune mechanisms in heart failure. Eur J Heart Fail. 19:1379–1389.
2017. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Hulot JS, Ishikawa K and Hajjar RJ: Gene
therapy for the treatment of heart failure: Promise postponed. Eur
Heart J. 37:1651–1658. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xu S, Kamato D, Little PJ, Nakagawa S,
Pelisek J and Jin ZG: Targeting epigenetics and non-coding RNAs in
atherosclerosis: From mechanisms to therapeutics. Pharmacol Ther.
Nov 12–2018.(Epub ahead of print). View Article : Google Scholar
|
9
|
Wong CM, Tsang FH and Ng IO: Non-coding
RNAs in hepatocellular carcinoma: Molecular functions and
pathological implications. Nat Rev Gastroenterol Hepatol.
15:137–151. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sallam T, Sandhu J and Tontonoz P: Long
noncoding RNA discovery in cardiovascular disease: Decoding form to
function. Circ Res. 122:155–166. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The rosetta stone of a hidden RNA
language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen X, Chen Z, Yu S, Nie F, Yan S, Ma P,
Chen Q, Wei C, Fu H, Xu T, et al: Long noncoding RNA LINC01234
functions as a competing endogenous RNA to regulate CBFB expression
by sponging miR-204-5p in gastric cancer. Clin Cancer Res.
24:2002–2014. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res. 41:(Database Issue).
D991–D995. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zheng Y, Zheng X, Li S, Zhang H, Liu M,
Yang Q, Zhang M, Sun Y, Wu J and Yu B: Identification of key genes
and pathways in regulating immune-induced diseases of dendritic
cells by bioinformatic analysis. Mol Med Rep. 17:7585–7594.
2018.PubMed/NCBI
|
15
|
Paraskevopoulou MD, Vlachos IS, Karagkouni
D, Georgakilas G, Kanellos I, Vergoulis T, Zagganas K, Tsanakas P,
Floros E, Dalamagas T and Hatzigeorgiou AG: DIANA-LncBase v2:
Indexing microRNA targets on non-coding transcripts. Nucleic Acids
Res. 44(D1): D231–D238. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chou CH, Shrestha S, Yang CD, Chang NW,
Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al: miRTarBase
update 2018: A resource for experimentally validated
microRNA-target interactions. Nucleic Acids Res. 46(D1): D296–D302.
2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yancy CW, Jessup M, Bozkurt B, Butler J,
Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC,
Givertz MM, et al: 2017 ACC/AHA/HFSA focused update of the 2013
ACCF/AHA guideline for the management of heart failure: A report of
the American college of cardiology/American heart association task
force on clinical practice guidelines and the heart failure society
of America. J Am Coll Cardiol. 70:776–803. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang M, Liu F, Jia H, Zhang Q, Yin L, Liu
W, Li H, Yu B and Wu J: Inhibition of microRNA let-7i depresses
maturation and functional state of dendritic cells in response to
lipopolysaccharide stimulation via targeting suppressor of cytokine
signaling 1. J Immunol. 187:1674–1683. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Han JD, Bertin N, Hao T, Goldberg DS,
Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP and
Vidal M: Evidence for dynamically organized modularity in the yeast
protein-protein interaction network. Nature. 430:88–93. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Gao L, Liu Y, Guo S, Yao R, Wu L, Xiao L,
Wang Z, Liu Y and Zhang Y: Circulating long noncoding RNA HOTAIR is
an essential mediator of acute myocardial infarction. Cell Physiol
Biochem. 44:1497–1508. 2017.PubMed/NCBI
|
22
|
Greco S, Zaccagnini G, Fuschi P,
Voellenkle C, Carrara M, Sadeghi I, Bearzi C, Maimone B,
Castelvecchio S, Stellos K, et al: Increased BACE1-AS long
noncoding RNA and β-amyloid levels in heart failure. Cardiovasc
Res. 113:453–463. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
O'Connor CM, Psotka MA, Fiuzat M,
Lindenfeld J, Abraham WT, Bristow MR, Canos D, Harrington RA,
Hillebrenner M, Jessup M, et al: Improving heart failure
therapeutics development in the United States: The heart failure
collaboratory. J Am Coll Cardiol. 71:443–453. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pearson MJ, Mungovan SF and Smart NA:
Effect of aerobic and resistance training on inflammatory markers
in heart failure patients: Systematic review and meta-analysis.
Heart Fail Rev. 23:209–223. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang KC and Chang HY: Molecular mechanisms
of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ulitsky I and Bartel DP: lincRNAs:
Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Shuwen H, Qing Z, Yan Z and Xi Y:
Competitive endogenous RNA in colorectal cancer: A systematic
review. Gene. 645:157–162. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang C, Wu D, Gao L, Liu X, Jin Y, Wang D,
Wang T and Li X: Competing endogenous RNA networks in human cancer:
Hypothesis, validation, and perspectives. Oncotarget.
7:13479–13490. 2016.PubMed/NCBI
|
29
|
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and
Ma W: ceRNA in cancer: Possible functions and clinical
implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jiang H, Ma R, Zou S, Wang Y, Li Z and Li
W: Reconstruction and analysis of the lncRNA-miRNA-mRNA network
based on competitive endogenous RNA reveal functional lncRNAs in
rheumatoid arthritis. Mol Biosyst. 13:1182–1192. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pang L, Hu J, Zhang G, Li X, Zhang X, Yu
F, Lan Y, Xu J, Pang B, Han D, et al: Dysregulated long intergenic
non-coding RNA modules contribute to heart failure. Oncotarget.
7:59676–59690. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dick SA and Epelman S: Chronic heart
failure and inflammation: What do we really know? Circ Res.
119:159–176. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fildes JE, Shaw SM, Yonan N and Williams
SG: The immune system and chronic heart failure: Is the heart in
control? J Am Coll Cardiol. 53:1013–1020. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Browne AL, Charmsaz S, Varešlija D, Fagan
A, Cosgrove N, Cocchiglia S, Purcell S, Ward E, Bane F, Hudson L,
et al: Network analysis of SRC-1 reveals a novel transcription
factor hub which regulates endocrine resistant breast cancer.
Oncogene. 37:2008–2021. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ovchinnikova ES, Schmitter D, Vegter EL,
Ter Maaten JM, Valente MA, Liu LC, van der Harst P, Pinto YM, de
Boer RA, Meyer S, et al: Signature of circulating microRNAs in
patients with acute heart failure. Eur J Heart Fail. 18:414–423.
2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vegter EL, Ovchinnikova ES, Silljé HHW,
Meems LMG, van der Pol A, van der Velde AR, Berezikov E, Voors AA,
de Boer RA and van der Meer P: Rodent heart failure models do not
reflect the human circulating microRNA signature in heart failure.
PLoS One. 12:e01772422017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liang D, Xu X, Deng F, Feng J, Zhang H,
Liu Y, Zhang Y, Pan L, Liu Y, Zhang D, et al: miRNA-940 reduction
contributes to human tetralogy of fallot development. J Cell Mol
Med. 18:1830–1839. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Xu T, Zhou Q, Che L, Das S, Wang L, Jiang
J, Li G, Xu J, Yao J, Wang H, et al: Circulating miR-21, miR-378,
and miR-940 increase in response to an acute exhaustive exercise in
chronic heart failure patients. Oncotarget. 7:12414–12425.
2016.PubMed/NCBI
|
39
|
Nevers T, Salvador AM, Velazquez F,
Ngwenyama N, Carrillo-Salinas FJ, Aronovitz M, Blanton RM and
Alcaide P: Th1 effector T cells selectively orchestrate cardiac
fibrosis in nonischemic heart failure. J Exp Med. 214:3311–3329.
2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tao H, Zhang JG, Qin RH, Dai C, Shi P,
Yang JJ, Deng ZY and Shi KH: LncRNA GAS5 controls cardiac
fibroblast activation and fibrosis by targeting miR-21 via
PTEN/MMP-2 signaling pathway. Toxicology. 386:11–18. 2017.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Greco S, Zaccagnini G, Perfetti A, Fuschi
P, Valaperta R, Voellenkle C, Castelvecchio S, Gaetano C, Finato N,
Beltrami AP, et al: Long noncoding RNA dysregulation in ischemic
heart failure. J Transl Med. 14:1832016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lai Y, He S, Ma L, Lin H, Ren B, Ma J, Zhu
X and Zhuang S: HOTAIR functions as a competing endogenous RNA to
regulate PTEN expression by inhibiting miR-19 in cardiac
hypertrophy. Mol Cell Biochem. 432:179–187. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wu Z, Zhao S, Li C and Liu C: LncRNA TUG1
serves an important role in hypoxia-induced myocardial cell injury
by regulating the miR-145-5p-Binp3 axis. Mol Med Rep. 17:2422–2430.
2018.PubMed/NCBI
|