1
|
Wang L, Liu H, Zhang L, Wang G, Zhang M
and Yu Y: Neuroprotection of dexmedetomidine against cerebral
ischemia-reperfusion injury in rats: Involved in inhibition of
NF-κB and inflammation response. Biomol Ther (Seoul). 25:383–389.
2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fu C, Dai X, Yang Y, Lin M, Cai Y and Cai
S: Dexmedetomidine attenuates lipopolysaccharide-induced acute lung
injury by inhibiting oxidative stress, mitochondrial dysfunction
and apoptosis in rats. Mol Med Rep. 15:131–138. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Küçükebe ÖB, Özzeybek D, Abdullayev R,
Ustaoğlu A, Tekmen I and Küme T: Effect of dexmedetomidine on acute
lung injury in experimental ischemia-reperfusion model. Rev Bras
Anestesiol. 67:139–146. 2017.(In Portuguese). View Article : Google Scholar : PubMed/NCBI
|
4
|
Shen J and Fu G, Jiang L, Xu J, Li L and
Fu G: Effect of dexmedetomidine pretreatment on lung injury
following intestinal ischemia-reperfusion. Exp Ther Med.
6:1359–1364. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Xie C, Li Y, Liang J, Xiao J, Zhao Z and
Li T: The effect of dexmedetomidine on autophagy and apoptosis in
intestinal ischemia reperfusion-induced lung injury. Zhonghua Jie
He He Hu Xi Za Zhi. 38:761–764. 2015.(In Chinese). PubMed/NCBI
|
6
|
Ammar AS, Mahmoud KM, Kasemy ZA and Helwa
MA: Cardiac and renal protective effects of dexmedetomidine in
cardiac surgeries: A randomized controlled trial. Saudi J Anaesth.
10:395–401. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cakir M, Polat A, Tekin S, Vardi N,
Taslidere E, Rumeysa Duran Z and Tanbek K: The effect of
dexmedetomidine against oxidative and tubular damage induced by
renal ischemia reperfusion in rats. Ren Fail. 37:704–708. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
de Carvalho AL, Vital RB, Kakuda CM, Braz
JR, Castiglia YM, Braz LG, Módolo MP, Ribeiro OR, Domingues MA and
Módolo NS: Dexmedetomidine on renal ischemia-reperfusion injury in
rats: Assessment by means of NGAL and histology. Ren Fail.
37:526–530. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu YE, Tong CC, Zhang YB, Jin HX, Gao Y
and Hou MX: Effect of dexmedetomidine on rats with renal
ischemia-reperfusion injury and the expression of tight junction
protein in kidney. Int J Clin Exp Med. 8:18751–18757.
2015.PubMed/NCBI
|
10
|
Si YN, Bao HG, Xu L, Wang XL, Shen Y, Wang
JS and Yang XB: Dexmedetomidine protects against
ischemia/reperfusion injury in rat kidney. Eur Rev Med Pharmacol
Sci. 18:1843–1851. 2014.PubMed/NCBI
|
11
|
Zhang XK, Zhou XP, Zhang Q and Zhu F: The
preventive effects of dexmedetomidine against intestinal
ischemia-reperfusion injury in Wistar rats. Iran J Basic Med Sci.
18:604–609. 2015.PubMed/NCBI
|
12
|
Zhang XY, Liu ZM, Wen SH, Li YS, Li Y, Yao
X, Huang WQ and Liu KX: Dexmedetomidine administration before, but
not after, ischemia attenuates intestinal injury induced by
intestinal ischemia-reperfusion in rats. Anesthesiology.
116:1035–1046. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Akpınar H, Nazıroğlu M, Övey İS, Çiğ B and
Akpınar O: The neuroprotective action of dexmedetomidine on
apoptosis, calcium entry and oxidative stress in cerebral
ischemia-induced rats: Contribution of TRPM2 and TRPV1 channels.
Sci Rep. 6:371962016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tanabe K, Matsushima-Nishiwaki R, Kozawa O
and Iida H: Dexmedetomidine suppresses interleukin-1β-induced
interleukin-6 synthesis in rat glial cells. Int J Mol Med.
34:1032–1038. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu YM, Wang CC, Chen L, Qian LB, Ma LL,
Yu J, Zhu MH, Wen CY, Yu LN and Yan M: Both PI3K/Akt and ERK1/2
pathways participate in the protection by dexmedetomidine against
transient focal cerebral ischemia/reperfusion injury in rats. Brain
Res. 1494:1–8. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chaudhuri AD, Choi DC, Kabaria S, Tran A
and Junn E: MicroRNA-7 regulates the function of mitochondrial
permeability transition pore by targeting VDAC1 expression. J Biol
Chem. 291:6483–6493. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ma Q, Dasgupta C, Li Y, Bajwa NM, Xiong F,
Harding B, Hartman R and Zhang L: Inhibition of microRNA-210
provides neuroprotection in hypoxic-ischemic brain injury in
neonatal rats. Neurobiol Dis. 89:202–212. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Quinlan S and Jimenez-Mateos EM: Can we
protect the brain via preconditioning? Role of microRNAs in
neuroprotection. Neural Regen Res. 11:388–389. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ren L, Zhu R and Li X: Silencing miR-181a
produces neuroprotection against hippocampus neuron cell apoptosis
post-status epilepticus in a rat model and in children with
temporal lobe epilepsy. Genet Mol Res. 15:2016. View Article : Google Scholar :
|
20
|
Sinoy S, Fayaz SM, Charles KD, Suvanish
VK, Kapfhammer JP and Rajanikant GK: Amikacin inhibits miR-497
maturation and exerts post-ischemic neuroprotection. Mol Neurobiol.
54:3683–3694. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou X, Su S, Li S, Pang X, Chen C, Li J
and Liu J: MicroRNA-146a down-regulation correlates with
neuroprotection and targets pro-apoptotic genes in cerebral
ischemic injury in vitro. Brain Res. 1648:136–143. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li M, He Y, Zhou Z, Ramirez T, Gao Y, Gao
Y, Ross RA, Cao H, Cai Y, Xu M, et al: MicroRNA-223 ameliorates
alcoholic liver injury by inhibiting the
IL-6-p47phox-oxidative stress pathway in neutrophils.
Gut. 2016.
|
23
|
Shin JH, Park YM, Kim DH, Moon GJ, Bang
OY, Ohn T and Kim HH: Ischemic brain extract increases SDF-1
expression in astrocytes through the CXCR2/miR-223/miR-27b pathway.
Biochim Biophys Acta. 1839:826–836. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Wu GJ, Chen JT, Tsai HC, Chen TL, Liu SH
and Chen RM: Protection of dexmedetomidine against
ischemia/reperfusion-induced apoptotic insults to neuronal cells
occurs via an intrinsic mitochondria-dependent pathway. J Cell
Biochem. 118:2635–2644. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wei Y, Hu J, Liang Y, Zhong Y, He D, Qin
Y, Li L, Chen J, Xiao Q and Xie Y: Dexmedetomidine pretreatment
attenuates propofol-induced neurotoxicity in neuronal cultures from
the rat hippocampus. Mol Med Rep. 14:3413–3420. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Schoeler M, Loetscher PD, Rossaint R,
Fahlenkamp AV, Eberhardt G, Rex S, Weis J and Coburn M:
Dexmedetomidine is neuroprotective in an in vitro model for
traumatic brain injury. BMC Neurol. 12:202012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Degos V, Charpentier TL, Chhor V, Brissaud
O, Lebon S, Schwendimann L, Bednareck N, Passemard S, Mantz J and
Gressens P: Neuroprotective effects of dexmedetomidine against
glutamate agonist-induced neuronal cell death are related to
increased astrocyte brain-derived neurotrophic factor expression.
Anesthesiology. 118:1123–1132. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Eacker SM, Dawson TM and Dawson VL:
Understanding microRNAs in neurodegeneration. Nat Rev Neurosci.
10:837–841. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Singh SK: miRNAs: From neurogeneration to
neurodegeneration. Pharmacogenomics. 8:971–978. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bushati N and Cohen SM: MicroRNAs in
neurodegeneration. Curr Opin Neurobiol. 18:292–296. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Karnati HK, Panigrahi MK, Gutti RK, Greig
NH and Tamargo IA: miRNAs: Key players in neurodegenerative
disorders and epilepsy. J Alzheimers Dis. 48:563–580. 2015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kamal MA, Mushtaq G and Greig NH: Current
update on synopsis of miRNA dysregulation in neurological
disorders. CNS Neurol Disord Drug Targets. 14:492–501. 2015.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Goodall EF, Heath PR, Bandmann O, Kirby J
and Shaw PJ: Neuronal dark matter: The emerging role of microRNAs
in neurodegeneration. Front Cell Neurosci. 7:1782013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Harraz MM, Xu JC, Guiberson N, Dawson TM
and Dawson VL: MiR-223 regulates the differentiation of immature
neurons. Mol Cell Ther. 2:182014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Harraz MM, Eacker SM, Wang X, Dawson TM
and Dawson VL: MicroRNA-223 is neuroprotective by targeting
glutamate receptors. Proc Natl Acad Sci USA. 109:18962–18967. 2012.
View Article : Google Scholar : PubMed/NCBI
|